Artículo
Molecular action mechanism of anti-inflammatory hydrolysates obtained from brewers' spent grain
Cian, Raúl Esteban
; Hernández Chirlaque, Cristina; Gámez Belmonte, Reyes; Drago, Silvina Rosa
; Sánchez de Medina, Fermín; Martínez Augustin, Olga
Fecha de publicación:
02/2020
Editorial:
John Wiley & Sons Ltd
Revista:
Journal of the Science of Food and Agriculture
ISSN:
0022-5142
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Background: Brewers’ spent grain (BSG) is a relevant, protein-rich by-product of the brewing process. Protein hydrolysates from different sources exert immune-regulatory actions activating toll-like receptors (TLRs), nuclear factor kappa B (NFκB), and mitogen-activated protein kinases (MAPKs). Effects of gastrointestinal digestion have been poorly studied. Here, we studied the immune-regulatory effect of BSG hydrolysates, and their in-vitro-digested products, on rat splenocytes, macrophages, and T lymphocytes. Results: In primary cultures of rat spleen cells, BSG hydrolysates induced interleukin 10 and tumor necrosis factor production in basal conditions. Under stimulation with lipopolysaccharide or concanavalin A, hydrolysates further induced interleukin 10 production. Tumor necrosis factor and interferon-γ were inhibited in lipopolysaccharide‑ and concanavalin-A-stimulated cells respectively. In vitro gastrointestinal digestion attenuated the observed effects. Splenic macrophages and T lymphocytes behaved in a similar fashion. In spleen cells from TLR2−/− and TLR4−/− mice, immune-regulatory effects were greatly reduced or abrogated. The study of signal transduction pathways indicated a major involvement of NFκB, and the contribution of MAPKs p38, c-Jun N-terminal kinase, and extracellular signal-regulated kinases 1 and 2. Conclusion: BSG hydrolysates, like those obtained from other food sources, regulate the immune response, involving TLR2 and TLR4 and the activation of NFκB and MAPKs, an effect partly maintained after in vitro gastrointestinal digestion. Our data support the hypothesis of a shared, rather unspecific, mechanism of action of protein hydrolysates.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - SANTA FE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Citación
Cian, Raúl Esteban; Hernández Chirlaque, Cristina; Gámez Belmonte, Reyes; Drago, Silvina Rosa; Sánchez de Medina, Fermín; et al.; Molecular action mechanism of anti-inflammatory hydrolysates obtained from brewers' spent grain; John Wiley & Sons Ltd; Journal of the Science of Food and Agriculture; 100; 7; 2-2020; 2880-2888
Compartir
Altmétricas