Artículo
Standards for the Characterization of Endurance in Resistive Switching Devices
Lanza, Rodolfo Mario; Waser, Rainer; Ielmini, Daniele; Yang, J. Joshua; Goux, Ludovic; Suñe, Jordi; Kenyon, Anthony Joseph; Mehonic, Adnan; Spiga, Sabina; Rana, Vikas; Wiefels, Stefan; Menzel, Stephan; Valov, Ilia; Villena, Marco A.; Miranda, Enrique; Jing, Xu; Campabadal, Francesca; Gonzalez, Mireia B.; Aguirre, Fernando Leonel
; Palumbo, Felix Roberto Mario
; Zhu, Kaichen; Roldan, Juan Bautista; Puglisi, Francesco Maria; Larcher, Luca; Hou, Tuo-Hung; Prodromakis, Themis; Yang, Yuchao; Huang, Peng; Wan, Tianqing; Chai, Yang
Fecha de publicación:
11/2021
Editorial:
American Chemical Society
Revista:
ACS Nano
ISSN:
1936-0851
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Resistive switching (RS) devices are emerging electronic components that could have applications in multiple types of integrated circuits, including electronic memories, true random number generators, radiofrequency switches, neuromorphic vision sensors, and artificial neural networks. The main factor hindering the massive employment of RS devices in commercial circuits is related to variability and reliability issues, which are usually evaluated through switching endurance tests. However, we note that most studies that claimed high endurances >106 cycles were based on resistance versus cycle plots that contain very few data points (in many cases even <20), and which are collected in only one device. We recommend not to use such a characterization method because it is highly inaccurate and unreliable (i.e., it cannot reliably demonstrate that the device effectively switches in every cycle and it ignores cycle-to-cycle and device-to-device variability). This has created a blurry vision of the real performance of RS devices and in many cases has exaggerated their potential. This article proposes and describes a method for the correct characterization of switching endurance in RS devices; this method aims to construct endurance plots showing one data point per cycle and resistive state and combine data from multiple devices. Adopting this recommended method should result in more reliable literature in the field of RS technologies, which should accelerate their integration in commercial products.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Lanza, Rodolfo Mario; Waser, Rainer; Ielmini, Daniele; Yang, J. Joshua; Goux, Ludovic; et al.; Standards for the Characterization of Endurance in Resistive Switching Devices; American Chemical Society; ACS Nano; 15; 11; 11-2021; 17214–17231
Compartir
Altmétricas