Artículo
Minimization of the line resistance impact on memdiode-based simulations of multilayer perceptron arrays applied to pattern recognition
Aguirre, Fernando Leonel
; Gomez, Nicolás M.; Pazos, Sebastián Matías
; Palumbo, Félix Roberto Mario
; Suñé, Jordi; Miranda, Enrique
Fecha de publicación:
03/2021
Editorial:
MDPI AG
Revista:
Journal of Low Power Electronics and Applications
ISSN:
2079-9268
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper, we extend the application of the Quasi-Static Memdiode model to the real-istic SPICE simulation of memristor-based single (SLPs) and multilayer perceptrons (MLPs) in-tended for large dataset pattern recognition. By considering ex-situ training and the classification of the hand-written characters of the MNIST database, we evaluate the degradation of the inference accuracy due to the interconnection resistances for MLPs involving up to three hidden neural layers. Two approaches to reduce the impact of the line resistance are considered and implemented in our simulations, they are the inclusion of an iterative calibration algorithm and the partitioning of the synaptic layers into smaller blocks. The obtained results indicate that MLPs are more sensitive to the line resistance effect than SLPs and that partitioning is the most effective way to minimize the impact of high line resistance values.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Aguirre, Fernando Leonel; Gomez, Nicolás M.; Pazos, Sebastián Matías; Palumbo, Félix Roberto Mario; Suñé, Jordi; et al.; Minimization of the line resistance impact on memdiode-based simulations of multilayer perceptron arrays applied to pattern recognition; MDPI AG; Journal of Low Power Electronics and Applications; 11; 1; 3-2021; 1-18
Compartir
Altmétricas