Mostrar el registro sencillo del ítem

dc.contributor.author
Aguirre, Fernando Leonel  
dc.contributor.author
Gomez, Nicolás M.  
dc.contributor.author
Pazos, Sebastián Matías  
dc.contributor.author
Palumbo, Félix Roberto Mario  
dc.contributor.author
Suñé, Jordi  
dc.contributor.author
Miranda, Enrique  
dc.date.available
2022-08-11T12:49:33Z  
dc.date.issued
2021-03  
dc.identifier.citation
Aguirre, Fernando Leonel; Gomez, Nicolás M.; Pazos, Sebastián Matías; Palumbo, Félix Roberto Mario; Suñé, Jordi; et al.; Minimization of the line resistance impact on memdiode-based simulations of multilayer perceptron arrays applied to pattern recognition; MDPI AG; Journal of Low Power Electronics and Applications; 11; 1; 3-2021; 1-18  
dc.identifier.issn
2079-9268  
dc.identifier.uri
http://hdl.handle.net/11336/165149  
dc.description.abstract
In this paper, we extend the application of the Quasi-Static Memdiode model to the real-istic SPICE simulation of memristor-based single (SLPs) and multilayer perceptrons (MLPs) in-tended for large dataset pattern recognition. By considering ex-situ training and the classification of the hand-written characters of the MNIST database, we evaluate the degradation of the inference accuracy due to the interconnection resistances for MLPs involving up to three hidden neural layers. Two approaches to reduce the impact of the line resistance are considered and implemented in our simulations, they are the inclusion of an iterative calibration algorithm and the partitioning of the synaptic layers into smaller blocks. The obtained results indicate that MLPs are more sensitive to the line resistance effect than SLPs and that partitioning is the most effective way to minimize the impact of high line resistance values.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
MDPI AG  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
CROSS-POINT  
dc.subject
MEMORY  
dc.subject
MEMRISTOR  
dc.subject
MULTILAYER PERCEPTRON  
dc.subject
NEUROMORPHIC  
dc.subject
PATTERN RECOGNITION  
dc.subject
RESISTIVE-SWITCHING  
dc.subject
RRAM  
dc.subject.classification
Física de los Materiales Condensados  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Minimization of the line resistance impact on memdiode-based simulations of multilayer perceptron arrays applied to pattern recognition  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-08-09T17:46:19Z  
dc.journal.volume
11  
dc.journal.number
1  
dc.journal.pagination
1-18  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Aguirre, Fernando Leonel. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Gomez, Nicolás M.. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; Argentina  
dc.description.fil
Fil: Pazos, Sebastián Matías. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; Argentina  
dc.description.fil
Fil: Palumbo, Félix Roberto Mario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; Argentina  
dc.description.fil
Fil: Suñé, Jordi. Universitat Autònoma de Barcelona; España  
dc.description.fil
Fil: Miranda, Enrique. Universitat Autònoma de Barcelona; España  
dc.journal.title
Journal of Low Power Electronics and Applications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2079-9268/11/1/9  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3390/jlpea11010009