Mostrar el registro sencillo del ítem
dc.contributor.author
Aguirre, Fernando Leonel
dc.contributor.author
Gomez, Nicolás M.
dc.contributor.author
Pazos, Sebastián Matías
dc.contributor.author
Palumbo, Félix Roberto Mario
dc.contributor.author
Suñé, Jordi
dc.contributor.author
Miranda, Enrique
dc.date.available
2022-08-11T12:49:33Z
dc.date.issued
2021-03
dc.identifier.citation
Aguirre, Fernando Leonel; Gomez, Nicolás M.; Pazos, Sebastián Matías; Palumbo, Félix Roberto Mario; Suñé, Jordi; et al.; Minimization of the line resistance impact on memdiode-based simulations of multilayer perceptron arrays applied to pattern recognition; MDPI AG; Journal of Low Power Electronics and Applications; 11; 1; 3-2021; 1-18
dc.identifier.issn
2079-9268
dc.identifier.uri
http://hdl.handle.net/11336/165149
dc.description.abstract
In this paper, we extend the application of the Quasi-Static Memdiode model to the real-istic SPICE simulation of memristor-based single (SLPs) and multilayer perceptrons (MLPs) in-tended for large dataset pattern recognition. By considering ex-situ training and the classification of the hand-written characters of the MNIST database, we evaluate the degradation of the inference accuracy due to the interconnection resistances for MLPs involving up to three hidden neural layers. Two approaches to reduce the impact of the line resistance are considered and implemented in our simulations, they are the inclusion of an iterative calibration algorithm and the partitioning of the synaptic layers into smaller blocks. The obtained results indicate that MLPs are more sensitive to the line resistance effect than SLPs and that partitioning is the most effective way to minimize the impact of high line resistance values.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
MDPI AG
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
CROSS-POINT
dc.subject
MEMORY
dc.subject
MEMRISTOR
dc.subject
MULTILAYER PERCEPTRON
dc.subject
NEUROMORPHIC
dc.subject
PATTERN RECOGNITION
dc.subject
RESISTIVE-SWITCHING
dc.subject
RRAM
dc.subject.classification
Física de los Materiales Condensados
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Minimization of the line resistance impact on memdiode-based simulations of multilayer perceptron arrays applied to pattern recognition
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-08-09T17:46:19Z
dc.journal.volume
11
dc.journal.number
1
dc.journal.pagination
1-18
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Aguirre, Fernando Leonel. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Gomez, Nicolás M.. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; Argentina
dc.description.fil
Fil: Pazos, Sebastián Matías. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; Argentina
dc.description.fil
Fil: Palumbo, Félix Roberto Mario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; Argentina
dc.description.fil
Fil: Suñé, Jordi. Universitat Autònoma de Barcelona; España
dc.description.fil
Fil: Miranda, Enrique. Universitat Autònoma de Barcelona; España
dc.journal.title
Journal of Low Power Electronics and Applications
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2079-9268/11/1/9
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3390/jlpea11010009
Archivos asociados