Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Application of the quasi-static memdiode model in cross-point arrays for large dataset pattern recognition

Aguirre, Fernando LeonelIcon ; Pazos, Sebastián MatíasIcon ; Palumbo, Felix Roberto MarioIcon ; Suñé, Jordi; Miranda, Enrique
Fecha de publicación: 11/2019
Editorial: Institute of Electrical and Electronics Engineers
Revista: IEEE Access
e-ISSN: 2169-3536
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería Eléctrica y Electrónica

Resumen

We investigate the use and performance of the quasi-static memdiode model (QMM) when incorporated into large cross-point arrays intended for pattern classification tasks. Following Chua's memristive devices theory, the QMM comprises two equations, one equation for the electron transport based on the double-diode circuit with single series resistance and a second equation for the internal memory state of the device based on the so-called logistic hysteron or memory map. Ex-situ trained memdiodes with different MNIST-like databases are used to establish the synaptic weights linking the top and bottom wire networks. The role played by the memdiode electrical parameters, wire resistance and capacitance values, image pixelation, connection schemes, signal-to-noise ratio and device-to-device variability in the classification effectiveness are investigated. The confusion matrix is used to benchmark the system performance metrics. We show that the simplicity, accuracy and robustness of the memdiode model makes it a suitable candidate for the realistic simulation of large-scale neural networks with non-idealities.
Palabras clave: CROSS-POINT , MEMORY , MEMRISTOR , NEUROMORPHIC , PATTERN RECOGNITION , RESISTIVE SWITCHING , RRAM
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 4.726Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/163235
URL: https://ieeexplore.ieee.org/document/9248999/
DOI: https://doi.org/10.1109/ACCESS.2020.3035638
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Aguirre, Fernando Leonel; Pazos, Sebastián Matías; Palumbo, Felix Roberto Mario; Suñé, Jordi; Miranda, Enrique; Application of the quasi-static memdiode model in cross-point arrays for large dataset pattern recognition; Institute of Electrical and Electronics Engineers; IEEE Access; 8; 11-2019; 202174-202193
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES