Mostrar el registro sencillo del ítem

dc.contributor.author
Aguirre, Fernando Leonel  
dc.contributor.author
Pazos, Sebastián Matías  
dc.contributor.author
Palumbo, Felix Roberto Mario  
dc.contributor.author
Suñé, Jordi  
dc.contributor.author
Miranda, Enrique  
dc.date.available
2022-07-27T12:50:44Z  
dc.date.issued
2019-11  
dc.identifier.citation
Aguirre, Fernando Leonel; Pazos, Sebastián Matías; Palumbo, Felix Roberto Mario; Suñé, Jordi; Miranda, Enrique; Application of the quasi-static memdiode model in cross-point arrays for large dataset pattern recognition; Institute of Electrical and Electronics Engineers; IEEE Access; 8; 11-2019; 202174-202193  
dc.identifier.uri
http://hdl.handle.net/11336/163235  
dc.description.abstract
We investigate the use and performance of the quasi-static memdiode model (QMM) when incorporated into large cross-point arrays intended for pattern classification tasks. Following Chua's memristive devices theory, the QMM comprises two equations, one equation for the electron transport based on the double-diode circuit with single series resistance and a second equation for the internal memory state of the device based on the so-called logistic hysteron or memory map. Ex-situ trained memdiodes with different MNIST-like databases are used to establish the synaptic weights linking the top and bottom wire networks. The role played by the memdiode electrical parameters, wire resistance and capacitance values, image pixelation, connection schemes, signal-to-noise ratio and device-to-device variability in the classification effectiveness are investigated. The confusion matrix is used to benchmark the system performance metrics. We show that the simplicity, accuracy and robustness of the memdiode model makes it a suitable candidate for the realistic simulation of large-scale neural networks with non-idealities.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Institute of Electrical and Electronics Engineers  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
CROSS-POINT  
dc.subject
MEMORY  
dc.subject
MEMRISTOR  
dc.subject
NEUROMORPHIC  
dc.subject
PATTERN RECOGNITION  
dc.subject
RESISTIVE SWITCHING  
dc.subject
RRAM  
dc.subject.classification
Ingeniería Eléctrica y Electrónica  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Application of the quasi-static memdiode model in cross-point arrays for large dataset pattern recognition  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-07-25T15:23:47Z  
dc.identifier.eissn
2169-3536  
dc.journal.volume
8  
dc.journal.pagination
202174-202193  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Nueva Jersey  
dc.description.fil
Fil: Aguirre, Fernando Leonel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; Argentina. Universitat Autònoma de Barcelona; España  
dc.description.fil
Fil: Pazos, Sebastián Matías. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; Argentina  
dc.description.fil
Fil: Palumbo, Felix Roberto Mario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; Argentina  
dc.description.fil
Fil: Suñé, Jordi. Universitat Autònoma de Barcelona; España  
dc.description.fil
Fil: Miranda, Enrique. Universitat Autònoma de Barcelona; España  
dc.journal.title
IEEE Access  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/9248999/  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1109/ACCESS.2020.3035638