Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Dense monocular Simultaneous Localization and Mapping by direct surfel optimization

Trabes, EmanuelIcon ; Avila, Luis OmarIcon ; Dondo Gazzano, Julio Daniel; Sosa Paez, Carlos Federico
Fecha de publicación: 31/12/2021
Editorial: Universidad Nacional Autónoma de México
Revista: Journal of Applied Research and Technology
ISSN: 1665-6423
e-ISSN: 1665-6423
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Control Automático y Robótica

Resumen

This work presents a novel approach for monocular dense Simultaneous Localization and Mapping. The surface to be estimated is represented as a piecewise planar surface, defined as a group of surfels each having as parameters the position and normal. These parameters are directly estimated from the raw camera pixels measurements using a Gauss-Newton iterative process. The representation of the surface as a group of surfels has many advantages. First, it allows recovering robust and accurate pixel depths, without the need to use a computationally demanding depth regularization schema. This has the further advantage of avoiding the use of a physically unlikely surface smoothness prior. What is more, new surfels can be correctly initialized from the information present in nearby surfels, avoiding also the need to use an expensive initialization routine commonly needed in Gauss-Newton methods. The method was written in the GLSL shading language, allowing the use of GPU devices and achieve real-time processing. The method was tested on benchmark datasets, showing both its depth and normal estimation capacity, and its quality to recover the original scene. Results presented in this work showcase the usefulness of the more physically grounded piecewise planar scene depth prior, instead of the more commonly pixel depth independence and smoothness prior.
Palabras clave: SLAM , Visual Odometry , Monocular , Depth Estimation
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.194Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/157661
URL: https://jart.icat.unam.mx/index.php/jart/article/view/991
DOI: https://doi.org/10.22201/icat.24486736e.2021.19.6.991
Colecciones
Articulos(CCT - SAN LUIS)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SAN LUIS
Citación
Trabes, Emanuel; Avila, Luis Omar; Dondo Gazzano, Julio Daniel; Sosa Paez, Carlos Federico; Dense monocular Simultaneous Localization and Mapping by direct surfel optimization; Universidad Nacional Autónoma de México; Journal of Applied Research and Technology; 19; 6; 31-12-2021; 644-652
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES