Mostrar el registro sencillo del ítem

dc.contributor.author
Trabes, Emanuel  
dc.contributor.author
Avila, Luis Omar  
dc.contributor.author
Dondo Gazzano, Julio Daniel  
dc.contributor.author
Sosa Paez, Carlos Federico  
dc.date.available
2022-05-16T18:34:05Z  
dc.date.issued
2021-12-31  
dc.identifier.citation
Trabes, Emanuel; Avila, Luis Omar; Dondo Gazzano, Julio Daniel; Sosa Paez, Carlos Federico; Dense monocular Simultaneous Localization and Mapping by direct surfel optimization; Universidad Nacional Autónoma de México; Journal of Applied Research and Technology; 19; 6; 31-12-2021; 644-652  
dc.identifier.issn
1665-6423  
dc.identifier.uri
http://hdl.handle.net/11336/157661  
dc.description.abstract
This work presents a novel approach for monocular dense Simultaneous Localization and Mapping. The surface to be estimated is represented as a piecewise planar surface, defined as a group of surfels each having as parameters the position and normal. These parameters are directly estimated from the raw camera pixels measurements using a Gauss-Newton iterative process. The representation of the surface as a group of surfels has many advantages. First, it allows recovering robust and accurate pixel depths, without the need to use a computationally demanding depth regularization schema. This has the further advantage of avoiding the use of a physically unlikely surface smoothness prior. What is more, new surfels can be correctly initialized from the information present in nearby surfels, avoiding also the need to use an expensive initialization routine commonly needed in Gauss-Newton methods. The method was written in the GLSL shading language, allowing the use of GPU devices and achieve real-time processing. The method was tested on benchmark datasets, showing both its depth and normal estimation capacity, and its quality to recover the original scene. Results presented in this work showcase the usefulness of the more physically grounded piecewise planar scene depth prior, instead of the more commonly pixel depth independence and smoothness prior.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Universidad Nacional Autónoma de México  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
SLAM  
dc.subject
Visual Odometry  
dc.subject
Monocular  
dc.subject
Depth Estimation  
dc.subject.classification
Control Automático y Robótica  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Dense monocular Simultaneous Localization and Mapping by direct surfel optimization  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-05-12T07:32:57Z  
dc.identifier.eissn
1665-6423  
dc.journal.volume
19  
dc.journal.number
6  
dc.journal.pagination
644-652  
dc.journal.pais
México  
dc.journal.ciudad
Ciudad de México  
dc.description.fil
Fil: Trabes, Emanuel. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Electrónica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; Argentina  
dc.description.fil
Fil: Avila, Luis Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; Argentina. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina  
dc.description.fil
Fil: Dondo Gazzano, Julio Daniel. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Electrónica; Argentina  
dc.description.fil
Fil: Sosa Paez, Carlos Federico. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Electrónica; Argentina  
dc.journal.title
Journal of Applied Research and Technology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://jart.icat.unam.mx/index.php/jart/article/view/991  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.22201/icat.24486736e.2021.19.6.991