Mostrar el registro sencillo del ítem

dc.contributor.author
Siniscalchi Minna, Sara  
dc.contributor.author
Bianchi, Fernando Daniel  
dc.contributor.author
Ocampo Martínez, Carlos  
dc.contributor.author
Domínguez-García, Jose Luis  
dc.contributor.author
De Schutter, Bart  
dc.date.available
2022-04-29T01:39:36Z  
dc.date.issued
2020-05  
dc.identifier.citation
Siniscalchi Minna, Sara; Bianchi, Fernando Daniel; Ocampo Martínez, Carlos; Domínguez-García, Jose Luis; De Schutter, Bart; A non-centralized predictive control strategy for wind farm active power control: A wake-based partitioning approach; Pergamon-Elsevier Science Ltd; Renewable Energy; 150; 5-2020; 656-669  
dc.identifier.issn
0960-1481  
dc.identifier.uri
http://hdl.handle.net/11336/156066  
dc.description.abstract
Owing to wake effects, the power production of each turbine in a wind farm is highly coupled to the operating conditions of the other turbines. Wind farm control strategies must take into account these couplings and produce individual power commands for each turbine. In this case, centralized control approaches might be prone to failures due to the high computational burden and communication dependency. To overcome this problem, this paper proposes a non-centralized scheme based on splitting the wind farm into almost uncoupled sets of turbines by solving a mixed-integer partitioning problem. In each set of turbines, a model predictive control strategy seeks to optimize the distribution of the power set-points among turbines such that the impact of the power losses due to the wake effect is reduced. Then, a supervisory controller coordinates the generation of each group to satisfy the power demanded by the grid operator. The effectiveness of the proposed control scheme in terms of reduction of computational costs and power regulation is confirmed by simulations for a wind farm of 42 turbines.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
MODEL PREDICTIVE CONTROL  
dc.subject
NON-CENTRALIZED CONTROL  
dc.subject
PARTITIONING ALGORITHMS  
dc.subject
WAKE EFFECT  
dc.subject
WIND FARM CONTROL  
dc.subject.classification
Control Automático y Robótica  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
A non-centralized predictive control strategy for wind farm active power control: A wake-based partitioning approach  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-04-26T17:08:12Z  
dc.identifier.eissn
1879-0682  
dc.journal.volume
150  
dc.journal.pagination
656-669  
dc.journal.pais
Reino Unido  
dc.description.fil
Fil: Siniscalchi Minna, Sara. Catalonia Institute for Energy Research; España. Universidad Politécnica de Catalunya; España  
dc.description.fil
Fil: Bianchi, Fernando Daniel. Instituto Tecnológico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Ocampo Martínez, Carlos. Universidad Politécnica de Catalunya; España  
dc.description.fil
Fil: Domínguez-García, Jose Luis. Catalonia Institute For Energy Research; España  
dc.description.fil
Fil: De Schutter, Bart. Delft University of Technology; Países Bajos  
dc.journal.title
Renewable Energy  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0960148119320129  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.renene.2019.12.139