Mostrar el registro sencillo del ítem
dc.contributor.author
Siniscalchi Minna, Sara
dc.contributor.author
Bianchi, Fernando Daniel
dc.contributor.author
Ocampo Martínez, Carlos
dc.contributor.author
Domínguez-García, Jose Luis
dc.contributor.author
De Schutter, Bart
dc.date.available
2022-04-29T01:39:36Z
dc.date.issued
2020-05
dc.identifier.citation
Siniscalchi Minna, Sara; Bianchi, Fernando Daniel; Ocampo Martínez, Carlos; Domínguez-García, Jose Luis; De Schutter, Bart; A non-centralized predictive control strategy for wind farm active power control: A wake-based partitioning approach; Pergamon-Elsevier Science Ltd; Renewable Energy; 150; 5-2020; 656-669
dc.identifier.issn
0960-1481
dc.identifier.uri
http://hdl.handle.net/11336/156066
dc.description.abstract
Owing to wake effects, the power production of each turbine in a wind farm is highly coupled to the operating conditions of the other turbines. Wind farm control strategies must take into account these couplings and produce individual power commands for each turbine. In this case, centralized control approaches might be prone to failures due to the high computational burden and communication dependency. To overcome this problem, this paper proposes a non-centralized scheme based on splitting the wind farm into almost uncoupled sets of turbines by solving a mixed-integer partitioning problem. In each set of turbines, a model predictive control strategy seeks to optimize the distribution of the power set-points among turbines such that the impact of the power losses due to the wake effect is reduced. Then, a supervisory controller coordinates the generation of each group to satisfy the power demanded by the grid operator. The effectiveness of the proposed control scheme in terms of reduction of computational costs and power regulation is confirmed by simulations for a wind farm of 42 turbines.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Pergamon-Elsevier Science Ltd
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
MODEL PREDICTIVE CONTROL
dc.subject
NON-CENTRALIZED CONTROL
dc.subject
PARTITIONING ALGORITHMS
dc.subject
WAKE EFFECT
dc.subject
WIND FARM CONTROL
dc.subject.classification
Control Automático y Robótica
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
A non-centralized predictive control strategy for wind farm active power control: A wake-based partitioning approach
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-04-26T17:08:12Z
dc.identifier.eissn
1879-0682
dc.journal.volume
150
dc.journal.pagination
656-669
dc.journal.pais
Reino Unido
dc.description.fil
Fil: Siniscalchi Minna, Sara. Catalonia Institute for Energy Research; España. Universidad Politécnica de Catalunya; España
dc.description.fil
Fil: Bianchi, Fernando Daniel. Instituto Tecnológico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Ocampo Martínez, Carlos. Universidad Politécnica de Catalunya; España
dc.description.fil
Fil: Domínguez-García, Jose Luis. Catalonia Institute For Energy Research; España
dc.description.fil
Fil: De Schutter, Bart. Delft University of Technology; Países Bajos
dc.journal.title
Renewable Energy
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0960148119320129
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.renene.2019.12.139
Archivos asociados