Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A simple method for recommending specialized specifications for diabetes monitoring

Avila, Luis OmarIcon ; Errecalde, Marcelo Luis
Fecha de publicación: 01/2018
Editorial: Pergamon-Elsevier Science Ltd
Revista: Expert Systems with Applications
ISSN: 0957-4174
e-ISSN: 1873-6793
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información

Resumen

Under glycemic variability, a characterization of the desired blood glucose (BG) behavior is needed to assess if a given artificial pancreas (AP) respects its specification. The specification is an essential element to detect any deviation from an adequate insulin policy. Specializing the monitoring specification is therefore of utmost importance as existing guidelines for diabetes management are general and do not take into account how the personal factors and lifestyle affect the glycemic behavior. Surely, recommending personalized monitoring specifications may provide flexible and appropriate treatment goals to be attained by diabetic patients in order to account for their actual treatment needs. In this work, we use machine learning models to characterize glycemic behavior in synthetic healthy individuals. To account for the day-by-day fluctuation in BG levels, we use a stochastic process superimposed on a deterministic model of the glucose-insulin dynamics. The obtained characterization of the glycemic behavior in healthy individuals is then used as the target class to predict, and thus recommend, personalized monitoring specifications to diabetic patients. Results show that the approach stands as a feasible strategy to recommending appropriate and realistic monitoring goals for diabetic patients based on healthy individuals who share a similar glycemic behavior. Eventually, the incorporation of a recommender approach on an intelligent monitoring system for the AP will allow on-line adaptation of the treatment requirements for each patient.
Palabras clave: COLD-START RECOMMENDATION , GLYCEMIC CONTROL , MACHINE LEARNING , MONITORING SPECIFICATION
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 8.037Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/148694
URL: https://www.sciencedirect.com/science/article/pii/S0957417417306267
DOI: http://dx.doi.org/10.1016/j.eswa.2017.09.019
Colecciones
Articulos(CCT - SAN LUIS)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SAN LUIS
Citación
Avila, Luis Omar; Errecalde, Marcelo Luis; A simple method for recommending specialized specifications for diabetes monitoring; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 91; 1-2018; 298-309
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES