Mostrar el registro sencillo del ítem

dc.contributor.author
Avila, Luis Omar  
dc.contributor.author
Errecalde, Marcelo Luis  
dc.date.available
2021-12-14T12:52:40Z  
dc.date.issued
2018-01  
dc.identifier.citation
Avila, Luis Omar; Errecalde, Marcelo Luis; A simple method for recommending specialized specifications for diabetes monitoring; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 91; 1-2018; 298-309  
dc.identifier.issn
0957-4174  
dc.identifier.uri
http://hdl.handle.net/11336/148694  
dc.description.abstract
Under glycemic variability, a characterization of the desired blood glucose (BG) behavior is needed to assess if a given artificial pancreas (AP) respects its specification. The specification is an essential element to detect any deviation from an adequate insulin policy. Specializing the monitoring specification is therefore of utmost importance as existing guidelines for diabetes management are general and do not take into account how the personal factors and lifestyle affect the glycemic behavior. Surely, recommending personalized monitoring specifications may provide flexible and appropriate treatment goals to be attained by diabetic patients in order to account for their actual treatment needs. In this work, we use machine learning models to characterize glycemic behavior in synthetic healthy individuals. To account for the day-by-day fluctuation in BG levels, we use a stochastic process superimposed on a deterministic model of the glucose-insulin dynamics. The obtained characterization of the glycemic behavior in healthy individuals is then used as the target class to predict, and thus recommend, personalized monitoring specifications to diabetic patients. Results show that the approach stands as a feasible strategy to recommending appropriate and realistic monitoring goals for diabetic patients based on healthy individuals who share a similar glycemic behavior. Eventually, the incorporation of a recommender approach on an intelligent monitoring system for the AP will allow on-line adaptation of the treatment requirements for each patient.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
COLD-START RECOMMENDATION  
dc.subject
GLYCEMIC CONTROL  
dc.subject
MACHINE LEARNING  
dc.subject
MONITORING SPECIFICATION  
dc.subject.classification
Otras Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
A simple method for recommending specialized specifications for diabetes monitoring  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-12-01T13:57:20Z  
dc.identifier.eissn
1873-6793  
dc.journal.volume
91  
dc.journal.pagination
298-309  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Avila, Luis Omar. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; Argentina  
dc.description.fil
Fil: Errecalde, Marcelo Luis. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina  
dc.journal.title
Expert Systems with Applications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0957417417306267  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.eswa.2017.09.019