Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A grasp detection method for industrial robots using a Convolutional Neural Network

Ogas, Elio; Avila, Luis OmarIcon ; Larregay, Guillermo Omar; Morán, Oscar Daniel
Fecha de publicación: 09/2019
Editorial: Institute of Electrical and Electronics Engineers
Revista: IEEE Latin America Transactions
ISSN: 1548-0992
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

In the near future, most of the industrial robots will serve as assistants involved in targeted complex manufacturing tasks which are difficult to be automated. To achieve this, it is crucial to enhance the ability of manipulators to pick and place objects from the assembly line. Reorienting and picking up pieces for assembly are difficult tasks to be done by manipulators since, for different pieces, shapes and physical properties vary. In this work, we use Convolutional Neural Networks for recognizing a selected production piece on a cluster. Once the selected piece has been recognized, a grasping algorithm estimates the best gripper configuration so that the robot is able to pick the piece up. Wetested our algorithm on grasping experiments with an ABB robot and using a common webcam as image input. We found that our implementations perform well and the robot was able to pick up a variety of objects.
Palabras clave: DEEP LEARNING , FRICTION CONES , HOUGH TRANSFORM , INDUSTRIAL ROBOT , OBJECT GRASPING
Ver el registro completo
 
Archivos asociados
Tamaño: 3.077Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/148609
URL: https://ieeexplore.ieee.org/document/8931145/
DOI: https://doi.org/10.1109/TLA.2019.8931145
Colecciones
Articulos(CCT - SAN LUIS)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SAN LUIS
Citación
Ogas, Elio; Avila, Luis Omar; Larregay, Guillermo Omar; Morán, Oscar Daniel; A grasp detection method for industrial robots using a Convolutional Neural Network; Institute of Electrical and Electronics Engineers; IEEE Latin America Transactions; 17; 9; 9-2019; 1509-1516
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES