Mostrar el registro sencillo del ítem
dc.contributor.author
Ogas, Elio
dc.contributor.author
Avila, Luis Omar
dc.contributor.author
Larregay, Guillermo Omar
dc.contributor.author
Morán, Oscar Daniel
dc.date.available
2021-12-13T16:19:53Z
dc.date.issued
2019-09
dc.identifier.citation
Ogas, Elio; Avila, Luis Omar; Larregay, Guillermo Omar; Morán, Oscar Daniel; A grasp detection method for industrial robots using a Convolutional Neural Network; Institute of Electrical and Electronics Engineers; IEEE Latin America Transactions; 17; 9; 9-2019; 1509-1516
dc.identifier.issn
1548-0992
dc.identifier.uri
http://hdl.handle.net/11336/148609
dc.description.abstract
In the near future, most of the industrial robots will serve as assistants involved in targeted complex manufacturing tasks which are difficult to be automated. To achieve this, it is crucial to enhance the ability of manipulators to pick and place objects from the assembly line. Reorienting and picking up pieces for assembly are difficult tasks to be done by manipulators since, for different pieces, shapes and physical properties vary. In this work, we use Convolutional Neural Networks for recognizing a selected production piece on a cluster. Once the selected piece has been recognized, a grasping algorithm estimates the best gripper configuration so that the robot is able to pick the piece up. Wetested our algorithm on grasping experiments with an ABB robot and using a common webcam as image input. We found that our implementations perform well and the robot was able to pick up a variety of objects.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Institute of Electrical and Electronics Engineers
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
DEEP LEARNING
dc.subject
FRICTION CONES
dc.subject
HOUGH TRANSFORM
dc.subject
INDUSTRIAL ROBOT
dc.subject
OBJECT GRASPING
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A grasp detection method for industrial robots using a Convolutional Neural Network
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-12-01T13:55:39Z
dc.journal.volume
17
dc.journal.number
9
dc.journal.pagination
1509-1516
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Nueva Jersey
dc.description.fil
Fil: Ogas, Elio. Universidad Nacional de San Luis. Facultad de Ingeniería y Ciencias Agropecuarias; Argentina
dc.description.fil
Fil: Avila, Luis Omar. Universidad Nacional de San Luis. Facultad de Ingeniería y Ciencias Agropecuarias; Argentina. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; Argentina
dc.description.fil
Fil: Larregay, Guillermo Omar. Universidad Nacional de San Luis. Facultad de Ingeniería y Ciencias Agropecuarias; Argentina
dc.description.fil
Fil: Morán, Oscar Daniel. Universidad Nacional de San Luis. Facultad de Ingeniería y Ciencias Agropecuarias; Argentina
dc.journal.title
IEEE Latin America Transactions
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/8931145/
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1109/TLA.2019.8931145
Archivos asociados