Mostrar el registro sencillo del ítem

dc.contributor.author
Ogas, Elio  
dc.contributor.author
Avila, Luis Omar  
dc.contributor.author
Larregay, Guillermo Omar  
dc.contributor.author
Morán, Oscar Daniel  
dc.date.available
2021-12-13T16:19:53Z  
dc.date.issued
2019-09  
dc.identifier.citation
Ogas, Elio; Avila, Luis Omar; Larregay, Guillermo Omar; Morán, Oscar Daniel; A grasp detection method for industrial robots using a Convolutional Neural Network; Institute of Electrical and Electronics Engineers; IEEE Latin America Transactions; 17; 9; 9-2019; 1509-1516  
dc.identifier.issn
1548-0992  
dc.identifier.uri
http://hdl.handle.net/11336/148609  
dc.description.abstract
In the near future, most of the industrial robots will serve as assistants involved in targeted complex manufacturing tasks which are difficult to be automated. To achieve this, it is crucial to enhance the ability of manipulators to pick and place objects from the assembly line. Reorienting and picking up pieces for assembly are difficult tasks to be done by manipulators since, for different pieces, shapes and physical properties vary. In this work, we use Convolutional Neural Networks for recognizing a selected production piece on a cluster. Once the selected piece has been recognized, a grasping algorithm estimates the best gripper configuration so that the robot is able to pick the piece up. Wetested our algorithm on grasping experiments with an ABB robot and using a common webcam as image input. We found that our implementations perform well and the robot was able to pick up a variety of objects.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Institute of Electrical and Electronics Engineers  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
DEEP LEARNING  
dc.subject
FRICTION CONES  
dc.subject
HOUGH TRANSFORM  
dc.subject
INDUSTRIAL ROBOT  
dc.subject
OBJECT GRASPING  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A grasp detection method for industrial robots using a Convolutional Neural Network  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-12-01T13:55:39Z  
dc.journal.volume
17  
dc.journal.number
9  
dc.journal.pagination
1509-1516  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Nueva Jersey  
dc.description.fil
Fil: Ogas, Elio. Universidad Nacional de San Luis. Facultad de Ingeniería y Ciencias Agropecuarias; Argentina  
dc.description.fil
Fil: Avila, Luis Omar. Universidad Nacional de San Luis. Facultad de Ingeniería y Ciencias Agropecuarias; Argentina. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; Argentina  
dc.description.fil
Fil: Larregay, Guillermo Omar. Universidad Nacional de San Luis. Facultad de Ingeniería y Ciencias Agropecuarias; Argentina  
dc.description.fil
Fil: Morán, Oscar Daniel. Universidad Nacional de San Luis. Facultad de Ingeniería y Ciencias Agropecuarias; Argentina  
dc.journal.title
IEEE Latin America Transactions  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/8931145/  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1109/TLA.2019.8931145