Artículo
State of charge monitoring of Li-ion batteries for electric vehicles using GP filtering
Fecha de publicación:
10/2019
Editorial:
Elsevier
Revista:
Journal of Energy Storage
ISSN:
2352-152X
e-ISSN:
2352-1538
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Electric vehicles are dependent on onboard battery management systems that protect the battery from functioning outside its safe operating limits by monitoring its state of charge (SOC). Advanced online monitoring techniques are required so that the performance of the energy management is not lowered severely. However, the behavior of batteries is difficult to be predicted online because of its nonlinearity, intrinsic variability and fluctuating environmental conditions. Gaussian Process (GP)-Bayesian filters are based on probabilistic non-parametric Gaussian models of hidden states using available measurements. As a result, model response variability can be explicitly incorporated into the prediction and measurement steps, which is usually not the case for more traditional filtering strategies that resort to parametric models for state estimation. In this work, GP models were incorporated into nonparametric filtering techniques to monitor the battery SOC online. Results show that Bayes’ filtering techniques increase the predictability of the SOC under uncertainty about the effect of environmental conditions on the SOC.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - SAN LUIS)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SAN LUIS
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SAN LUIS
Articulos(INGAR)
Articulos de INST.DE DESARROLLO Y DISEÑO (I)
Articulos de INST.DE DESARROLLO Y DISEÑO (I)
Articulos(INTEQUI)
Articulos de INST. DE INVEST. EN TECNOLOGIA QUIMICA
Articulos de INST. DE INVEST. EN TECNOLOGIA QUIMICA
Citación
Avila, Luis Omar; Errecalde, Marcelo Luis; Serra, Federico Martin; Martínez, Ernesto Carlos; State of charge monitoring of Li-ion batteries for electric vehicles using GP filtering; Elsevier; Journal of Energy Storage; 25; 10-2019; 1-9
Compartir
Altmétricas