Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

State of charge monitoring of Li-ion batteries for electric vehicles using GP filtering

Avila, Luis OmarIcon ; Errecalde, Marcelo Luis; Serra, Federico MartinIcon ; Martínez, Ernesto CarlosIcon
Fecha de publicación: 10/2019
Editorial: Elsevier
Revista: Journal of Energy Storage
ISSN: 2352-152X
e-ISSN: 2352-1538
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

Electric vehicles are dependent on onboard battery management systems that protect the battery from functioning outside its safe operating limits by monitoring its state of charge (SOC). Advanced online monitoring techniques are required so that the performance of the energy management is not lowered severely. However, the behavior of batteries is difficult to be predicted online because of its nonlinearity, intrinsic variability and fluctuating environmental conditions. Gaussian Process (GP)-Bayesian filters are based on probabilistic non-parametric Gaussian models of hidden states using available measurements. As a result, model response variability can be explicitly incorporated into the prediction and measurement steps, which is usually not the case for more traditional filtering strategies that resort to parametric models for state estimation. In this work, GP models were incorporated into nonparametric filtering techniques to monitor the battery SOC online. Results show that Bayes’ filtering techniques increase the predictability of the SOC under uncertainty about the effect of environmental conditions on the SOC.
Palabras clave: BATTERY MANAGEMENT SYSTEMS , BATTERY VARIABILITY , BAYESIAN FILTERING , GAUSSIAN PROCESSES , STATE OF CHARGE
Ver el registro completo
 
Archivos asociados
Tamaño: 1.826Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/144853
URL: https://www.sciencedirect.com/science/article/pii/S2352152X19302373
DOI: https://doi.org/10.1016/j.est.2019.100837
Colecciones
Articulos(CCT - SAN LUIS)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SAN LUIS
Articulos(INGAR)
Articulos de INST.DE DESARROLLO Y DISEÑO (I)
Articulos(INTEQUI)
Articulos de INST. DE INVEST. EN TECNOLOGIA QUIMICA
Citación
Avila, Luis Omar; Errecalde, Marcelo Luis; Serra, Federico Martin; Martínez, Ernesto Carlos; State of charge monitoring of Li-ion batteries for electric vehicles using GP filtering; Elsevier; Journal of Energy Storage; 25; 10-2019; 1-9
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES