Mostrar el registro sencillo del ítem

dc.contributor.author
Avila, Luis Omar  
dc.contributor.author
Errecalde, Marcelo Luis  
dc.contributor.author
Serra, Federico Martin  
dc.contributor.author
Martínez, Ernesto Carlos  
dc.date.available
2021-10-23T01:32:34Z  
dc.date.issued
2019-10  
dc.identifier.citation
Avila, Luis Omar; Errecalde, Marcelo Luis; Serra, Federico Martin; Martínez, Ernesto Carlos; State of charge monitoring of Li-ion batteries for electric vehicles using GP filtering; Elsevier; Journal of Energy Storage; 25; 10-2019; 1-9  
dc.identifier.issn
2352-152X  
dc.identifier.uri
http://hdl.handle.net/11336/144853  
dc.description.abstract
Electric vehicles are dependent on onboard battery management systems that protect the battery from functioning outside its safe operating limits by monitoring its state of charge (SOC). Advanced online monitoring techniques are required so that the performance of the energy management is not lowered severely. However, the behavior of batteries is difficult to be predicted online because of its nonlinearity, intrinsic variability and fluctuating environmental conditions. Gaussian Process (GP)-Bayesian filters are based on probabilistic non-parametric Gaussian models of hidden states using available measurements. As a result, model response variability can be explicitly incorporated into the prediction and measurement steps, which is usually not the case for more traditional filtering strategies that resort to parametric models for state estimation. In this work, GP models were incorporated into nonparametric filtering techniques to monitor the battery SOC online. Results show that Bayes’ filtering techniques increase the predictability of the SOC under uncertainty about the effect of environmental conditions on the SOC.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
BATTERY MANAGEMENT SYSTEMS  
dc.subject
BATTERY VARIABILITY  
dc.subject
BAYESIAN FILTERING  
dc.subject
GAUSSIAN PROCESSES  
dc.subject
STATE OF CHARGE  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
State of charge monitoring of Li-ion batteries for electric vehicles using GP filtering  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-08-05T16:42:23Z  
dc.identifier.eissn
2352-1538  
dc.journal.volume
25  
dc.journal.pagination
1-9  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Avila, Luis Omar. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; Argentina  
dc.description.fil
Fil: Errecalde, Marcelo Luis. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina  
dc.description.fil
Fil: Serra, Federico Martin. Universidad Nacional de San Luis. Facultad de Ingeniería y Ciencias Agropecuarias. Laboratorio de Control Automático; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; Argentina  
dc.description.fil
Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina  
dc.journal.title
Journal of Energy Storage  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2352152X19302373  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.est.2019.100837