Mostrar el registro sencillo del ítem

dc.contributor.author
Lizarralde, Ignacio  
dc.contributor.author
Mateos Diaz, Cristian Maximiliano  
dc.contributor.author
Zunino Suarez, Alejandro Octavio  
dc.contributor.author
Majchrzak, Tim A.  
dc.contributor.author
Grønli, Tor Morten  
dc.date.available
2021-09-30T13:44:05Z  
dc.date.issued
2020-07  
dc.identifier.citation
Lizarralde, Ignacio; Mateos Diaz, Cristian Maximiliano; Zunino Suarez, Alejandro Octavio; Majchrzak, Tim A.; Grønli, Tor Morten; Discovering web services in social web service repositories using deep variational autoencoders; Pergamon-Elsevier Science Ltd; Information Processing & Management; 57; 4; 7-2020; 1-19  
dc.identifier.issn
0306-4573  
dc.identifier.uri
http://hdl.handle.net/11336/142055  
dc.description.abstract
Web Service registries have progressively evolved to social networks-like software repositories. Users cooperate to produce an ever-growing, rich source of Web APIs upon which new value-added Web applications can be built. Such users often interact in order to follow, comment on, consume and compose services published by other users. In this context, Web Service discovery is a core functionality of modern registries as needed Web Services must be discovered before being consumed or composed. Many efforts to provide effective keyword-based service discovery mechanisms are based on Information Retrieval techniques as services are described using structured or unstructured textdocuments that specify the provided functionality. However, traditional techniques suffer from term-mismatch, which means that only the terms that are contained in both user queries and descriptions are exploited to perform service retrieval. Early feature learning techniques such as LSA or LDA tried to solve this problem by finding hidden or latent features in text documents. Recently, alternative feature learning based techniques such as Word Embeddings achieved state of the art results for Web Service discovery. In this paper, we propose to learn features from service descriptions by using Variational Autoencoders, a special kind of autoencoder which restricts the encoded representation to model latent variables. Autoencoders in turn are deep neural networks used for unsupervised learning of efficient codings. We train our autoencoder using a real 17 113-service dataset extracted from the ProgrammableWeb.com API social repository. We measure discovery efficacy by using both Recall and Precision metrics, achieving significant gains compared to both Word Embeddings and classic latent features modelling techniques. Also, performance-oriented experiments show that the proposed approach can be readily exploited in practice.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
DEEP NEURAL NETWORK  
dc.subject
SERVICE DISCOVERY  
dc.subject
SERVICE-ORIENTED COMPUTING  
dc.subject
VARIATIONAL AUTOENCODER  
dc.subject
WEB SERVICES  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Discovering web services in social web service repositories using deep variational autoencoders  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-01-27T19:55:08Z  
dc.journal.volume
57  
dc.journal.number
4  
dc.journal.pagination
1-19  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Lizarralde, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.description.fil
Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.description.fil
Fil: Zunino Suarez, Alejandro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.description.fil
Fil: Majchrzak, Tim A.. University Of Agder; Noruega  
dc.description.fil
Fil: Grønli, Tor Morten. Kristiania University College; Noruega  
dc.journal.title
Information Processing & Management  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0306457319310878  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.ipm.2020.102231