Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Discovering web services in social web service repositories using deep variational autoencoders

Lizarralde, IgnacioIcon ; Mateos Diaz, Cristian MaximilianoIcon ; Zunino Suarez, Alejandro OctavioIcon ; Majchrzak, Tim A.; Grønli, Tor Morten
Fecha de publicación: 07/2020
Editorial: Pergamon-Elsevier Science Ltd
Revista: Information Processing & Management
ISSN: 0306-4573
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

Web Service registries have progressively evolved to social networks-like software repositories. Users cooperate to produce an ever-growing, rich source of Web APIs upon which new value-added Web applications can be built. Such users often interact in order to follow, comment on, consume and compose services published by other users. In this context, Web Service discovery is a core functionality of modern registries as needed Web Services must be discovered before being consumed or composed. Many efforts to provide effective keyword-based service discovery mechanisms are based on Information Retrieval techniques as services are described using structured or unstructured textdocuments that specify the provided functionality. However, traditional techniques suffer from term-mismatch, which means that only the terms that are contained in both user queries and descriptions are exploited to perform service retrieval. Early feature learning techniques such as LSA or LDA tried to solve this problem by finding hidden or latent features in text documents. Recently, alternative feature learning based techniques such as Word Embeddings achieved state of the art results for Web Service discovery. In this paper, we propose to learn features from service descriptions by using Variational Autoencoders, a special kind of autoencoder which restricts the encoded representation to model latent variables. Autoencoders in turn are deep neural networks used for unsupervised learning of efficient codings. We train our autoencoder using a real 17 113-service dataset extracted from the ProgrammableWeb.com API social repository. We measure discovery efficacy by using both Recall and Precision metrics, achieving significant gains compared to both Word Embeddings and classic latent features modelling techniques. Also, performance-oriented experiments show that the proposed approach can be readily exploited in practice.
Palabras clave: DEEP NEURAL NETWORK , SERVICE DISCOVERY , SERVICE-ORIENTED COMPUTING , VARIATIONAL AUTOENCODER , WEB SERVICES
Ver el registro completo
 
Archivos asociados
Tamaño: 2.069Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/142055
URL: https://linkinghub.elsevier.com/retrieve/pii/S0306457319310878
DOI: http://dx.doi.org/10.1016/j.ipm.2020.102231
Colecciones
Articulos(ISISTAN)
Articulos de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Citación
Lizarralde, Ignacio; Mateos Diaz, Cristian Maximiliano; Zunino Suarez, Alejandro Octavio; Majchrzak, Tim A.; Grønli, Tor Morten; Discovering web services in social web service repositories using deep variational autoencoders; Pergamon-Elsevier Science Ltd; Information Processing & Management; 57; 4; 7-2020; 1-19
Compartir
Altmétricas
 

Items relacionados

Mostrando titulos relacionados por título, autor y tema.

  • Artículo Ecosystem services and disservices associated with pastoral systems from Patagonia, Argentina – A review
    Tittonell, Pablo; Hara, Sofía María ; Alvarez, Valeria Esther ; Aramayo, Valeria; Bruzzone, Octavio Augusto ; Easdale, Marcos Horacio ; Enriquez, Andrea Soledad ; Laborda, Luciana ; Trinco, Fabio Daniel ; Villagra, Edgar Sebastián; El Mujtar, Verónica Andrea (John Libbey Eurotext Ltd, 2021-11)
  • Artículo Spotting and Removing WSDL Anti-pattern Root Causes in Code-first Web Services Using NLP Techniques: A Thorough Validation of Impact on Service Discoverability
    Hirsch Jofré, Matías Eberardo ; Rodriguez, Juan Manuel ; Rodriguez, Juan Manuel ; Mateos Diaz, Cristian Maximiliano ; Zunino Suarez, Alejandro Octavio (Elsevier Science, 2018-02)
  • Artículo Le world university service et l´Amérique latine
    Bayle, Paola Adriana ; Navarro, Juan José (Institut Pierre Renouvin - Université Paris I, 2014-11)
Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES