Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Spotting and Removing WSDL Anti-pattern Root Causes in Code-first Web Services Using NLP Techniques: A Thorough Validation of Impact on Service Discoverability

Hirsch Jofré, Matías EberardoIcon ; Rodriguez, Juan ManuelIcon ; Rodriguez, Juan ManuelIcon ; Mateos Diaz, Cristian MaximilianoIcon ; Zunino Suarez, Alejandro OctavioIcon
Fecha de publicación: 02/2018
Editorial: Elsevier Science
Revista: Computer Standards & Interfaces
ISSN: 0920-5489
Idioma: Inglés
Tipo de recurso: Artículo publicado

Resumen

To expose software as Web-accesible services, Web Service technologies demand developers to implement certain sofware artifacts, such as the service description using WSDL. Therefore, developers usually use automatic tools to perform this task, which take as input a code written in a programming language –e.g. Java– and generate the necessary artifacts for invoking it remotely. However, as a result of tool flaws and some bad coding practices, the description of the resulting Web Services might contain anti-patterns that difficult their discovery and use. In earlier work we proposed a tool-supported, code-first approach named Gapidt to develop Web Services in Java while early reducing the presence of anti-patterns in their descriptions through code refactorings. Bad coding practices, which potentially reduce the textual and structural information of generated WSDL documents, are automatically detected and informed to the developer by means of the GAnalyzer module so he/she can fix the service code. Moreover, developer provided information, such as service parameter names and operation comments, as well as re-utilization of data-type definitions, are exploited by the GMapper module upon generating WSDL documents. This paper focuses on a comprehensive experimental evaluation of the approach oriented at prospective users to assess expected discoverability gains and usage considerations taking into account various relevant service publishing technologies. In addition, we introduce a detailed comparison of Gapidt with a similar approach from the literature. The results show that Gapidt outperforms its competitor in terms of discoverability while improves Web Service description quality (better documentation and data-models). The Web Service discoverability levels of Gapidt outperforms that of third-party tools, either when using the GAnalyzer plus the GMapper, or only the GMapper.
Palabras clave: Automatic Detection , Code-First , Service Discovery , Web Services , Wsdl Anti-Patterns
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 794.4Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/embargoedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/58471
URL: https://www.sciencedirect.com/science/article/pii/S0920548917300892
DOI: https://doi.org/10.1016/j.csi.2017.09.010
Colecciones
Articulos(ISISTAN)
Articulos de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Citación
Hirsch Jofré, Matías Eberardo; Rodriguez, Juan Manuel; Rodriguez, Juan Manuel; Mateos Diaz, Cristian Maximiliano; Zunino Suarez, Alejandro Octavio; Spotting and Removing WSDL Anti-pattern Root Causes in Code-first Web Services Using NLP Techniques: A Thorough Validation of Impact on Service Discoverability; Elsevier Science; Computer Standards & Interfaces; 56; 2-2018; 116-133
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES