Artículo
Circularly Compatible Ones, $D$-Circularity, and Proper Circular-Arc Bigraphs
Fecha de publicación:
12/04/2021
Editorial:
Society for Industrial and Applied Mathematics
Revista:
Siam Journal On Discrete Mathematics
ISSN:
0895-4801
e-ISSN:
1095-7146
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In 1969, Tucker characterized proper circular-arc graphs as those graphs whose augmented adjacency matrices have the circularly compatible ones property. Moreover, he also found a polynomial-time algorithm for deciding whether any given augmented adjacency matrix has the circularly compatible ones property. These results led to the first polynomial-time recognition algorithm for proper circular-arc graphs. However, as remarked there, this work did not solve the problems of finding a structure theorem and an efficient recognition algorithm for the circularly compatible ones property in arbitrary matrices (i.e., not restricted to augmented adjacency matrices only). In the present work, we solve these problems. More precisely, we give a minimal forbidden submatrix characterization for the circularly compatible ones property in arbitrary matrices and a linear-time recognition algorithm for the same property. We derive these results from analogous ones for the related $D$-circular property. Interestingly, these results lead to a minimal forbidden induced subgraph characterization and a linear-time recognition algorithm for proper circular-arc bigraphs, solving a problem first posed by Basu et al. [J. Graph Theory, 73 (2013), pp. 361--376]. Our findings generalize some known results about $D$-interval hypergraphs and proper interval bigraphs.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INMABB)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Citación
Safe, Martin Dario; Circularly Compatible Ones, $D$-Circularity, and Proper Circular-Arc Bigraphs; Society for Industrial and Applied Mathematics; Siam Journal On Discrete Mathematics; 35; 2; 12-4-2021; 707-751
Compartir
Items relacionados
Mostrando titulos relacionados por título, autor y tema.
-
Lin, Min Chih ; Soulignac, Francisco Juan ; Szwarcfiter, Jayme L. (Elsevier Science, 2013-05)
-
Rossit, Carlos Adolfo ; Laura, Patricio Adolfo Antonio ; Romanelli, Enrique (Universitat Politècnica de Catalunya, 2004-12)
-
Curtis, Andrew R.; Lin, Min Chih ; McConnell, Ross M.; Nussbaum, Yahav; Soulignac, Francisco Juan ; Spinrad, Jeremy P.; Szwarcfiter, Jayme L. (Discrete Mathematics and Theoretical Computer Science, 2013-03)