Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Circularly Compatible Ones, $D$-Circularity, and Proper Circular-Arc Bigraphs

Safe, Martin DarioIcon
Fecha de publicación: 12/04/2021
Editorial: Society for Industrial and Applied Mathematics
Revista: Siam Journal On Discrete Mathematics
ISSN: 0895-4801
e-ISSN: 1095-7146
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Aplicada

Resumen

In 1969, Tucker characterized proper circular-arc graphs as those graphs whose augmented adjacency matrices have the circularly compatible ones property. Moreover, he also found a polynomial-time algorithm for deciding whether any given augmented adjacency matrix has the circularly compatible ones property. These results led to the first polynomial-time recognition algorithm for proper circular-arc graphs. However, as remarked there, this work did not solve the problems of finding a structure theorem and an efficient recognition algorithm for the circularly compatible ones property in arbitrary matrices (i.e., not restricted to augmented adjacency matrices only). In the present work, we solve these problems. More precisely, we give a minimal forbidden submatrix characterization for the circularly compatible ones property in arbitrary matrices and a linear-time recognition algorithm for the same property. We derive these results from analogous ones for the related $D$-circular property. Interestingly, these results lead to a minimal forbidden induced subgraph characterization and a linear-time recognition algorithm for proper circular-arc bigraphs, solving a problem first posed by Basu et al. [J. Graph Theory, 73 (2013), pp. 361--376]. Our findings generalize some known results about $D$-interval hypergraphs and proper interval bigraphs.
Palabras clave: CIRCULAR-ONES PROPERTY , CIRCULARY COMPATIBLE ONES , PROPER CIRCULAR-ARC BIOGRAPH
Ver el registro completo
 
Archivos asociados
Tamaño: 610.8Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/139699
URL: https://epubs.siam.org/doi/10.1137/19M1266162
URL: https://doi.org/10.1137/19M1266162
Colecciones
Articulos(INMABB)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Citación
Safe, Martin Dario; Circularly Compatible Ones, $D$-Circularity, and Proper Circular-Arc Bigraphs; Society for Industrial and Applied Mathematics; Siam Journal On Discrete Mathematics; 35; 2; 12-4-2021; 707-751
Compartir

Items relacionados

Mostrando titulos relacionados por título, autor y tema.

  • Artículo Normal Helly circular-arc graphs and its subclasses
    Lin, Min Chih ; Soulignac, Francisco Juan ; Szwarcfiter, Jayme L. (Elsevier Science, 2013-05)
  • Artículo Conducción térmica no estacionaria en una placa circular con borde ligeramente perturbado
    Rossit, Carlos Adolfo ; Laura, Patricio Adolfo Antonio ; Romanelli, Enrique (Universitat Politècnica de Catalunya, 2004-12)
  • Artículo Isomorphism of graph classes related to the circular-ones property
    Curtis, Andrew R.; Lin, Min Chih ; McConnell, Ross M.; Nussbaum, Yahav; Soulignac, Francisco Juan ; Spinrad, Jeremy P.; Szwarcfiter, Jayme L. (Discrete Mathematics and Theoretical Computer Science, 2013-03)
Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES