Artículo
Normal Helly circular-arc graphs and its subclasses
Fecha de publicación:
05/2013
Editorial:
Elsevier Science
Revista:
Discrete Applied Mathematics
ISSN:
0166-218X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
A Helly circular-arc model M=(C,A) is a circle C together with a Helly family A of arcs of C. If no arc is contained in any other, then M is a proper Helly circular-arc model, if every arc has the same length, then M is a unit Helly circular-arc model, and if there are no two arcs covering the circle, then M is a normal Helly circular-arc model. A Helly (resp. proper Helly, unit Helly, normal Helly) circular-arc graph is the intersection graph of the arcs of a Helly (resp. proper Helly, unit Helly, normal Helly) circular-arc model. In this article we study these subclasses of Helly circular-arc graphs. We show natural generalizations of several properties of (proper) interval graphs that hold for some of these Helly circular-arc subclasses. Next, we describe characterizations for the subclasses of Helly circular-arc graphs, including forbidden induced subgraphs characterizations. These characterizations lead to efficient algorithms for recognizing graphs within these classes. Finally, we show how these classes of graphs relate with straight and round digraphs.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Lin, Min Chih; Soulignac, Francisco Juan; Szwarcfiter, Jayme L.; Normal Helly circular-arc graphs and its subclasses; Elsevier Science; Discrete Applied Mathematics; 161; 7-8; 5-2013; 1037-1059
Compartir
Altmétricas
Items relacionados
Mostrando titulos relacionados por título, autor y tema.
-
Lin, Min Chih ; Soulignac, Francisco Juan ; Szwarcfiter, Jayme L. (Elsevier Science, 2010-06)
-
Soulignac, Francisco Juan (Elsevier Science, 2021-10)
-
Joeris, Benson L.; Lin, Min Chih ; McConnell, Ross M.; Spinrad, Jeremy P.; Szwarcfiter, Jayme L. (Springer, 2011-02)