Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Adaptive Neural Compensator for Robotic Systems Control

Gandolfo, DanielIcon ; Rossomando, Francisco GuidoIcon ; Soria, Carlos MiguelIcon ; Carelli Albarracin, Ricardo OscarIcon
Fecha de publicación: 04/2019
Editorial: Institute of Electrical and Electronics Engineers
Revista: IEEE Latin America Transactions
ISSN: 1548-0992
Idioma: Español
Tipo de recurso: Artículo publicado
Clasificación temática:
Control Automático y Robótica

Resumen

In the area of robotics systems, there are numerous applications where robots are expected to move rapidly from one place to another, or follow desired trajectories while maintaining good dynamic behavior. However, certain non-linearities, uncertainties in dynamics and external perturbations make the design of ideal controllers a complicated task in many situations. In this paper, we propose a control scheme that combines a nominal feedback controller with a classical PD and a robust adaptive compensator based on artificial neural networks. Using this control scheme, it is possible to obtain a fully tuned compensation parameters and a strong robustness with respect to uncertain dynamics and different non-linearities, as well as to keep the output tracking error bounded to values close to zero. In order to show the performance of the proposed technique, a SCARA (Selective Compliant Articulated Robot Arm) type robot with two degrees of freedom is considered in this case; but this control proposal can be applied to different systems with dynamic variations. The efficiency and performance of the control law is demonstrated through simulation results and the stability analysis is carried out using Lyapunov's theory.
Palabras clave: ADAPTIVE CONTROL , ARTIFICIAL NEURAL NETWORK , IDENTIFICATION , ROBOT MANIPULATOR
Ver el registro completo
 
Archivos asociados
Tamaño: 744.5Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/124880
URL: https://ieeexplore.ieee.org/abstract/document/8891932
DOI: http://dx.doi.org/10.1109/TLA.2019.8891932
Colecciones
Articulos(INAUT)
Articulos de INSTITUTO DE AUTOMATICA
Citación
Gandolfo, Daniel; Rossomando, Francisco Guido; Soria, Carlos Miguel; Carelli Albarracin, Ricardo Oscar; Adaptive Neural Compensator for Robotic Systems Control; Institute of Electrical and Electronics Engineers; IEEE Latin America Transactions; 17; 4; 4-2019; 670-676
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES