Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

NIR-based Sudan I to IV and Para-Red food adulterants screening

Trentanni-hansen, Gimena Jessica; Almonacid, Jonathan SamuelIcon ; Albertengo, Liliana; Rodriguez, Maria Susana; Di Anibal, Carolina VanesaIcon ; Delrieux, Claudio AugustoIcon
Fecha de publicación: 10/06/2019
Editorial: Taylor & Francis
Revista: Food Additives and Contaminants: Part A
ISSN: 1944-0049
e-ISSN: 1944-0057
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Química Analítica

Resumen

Spices are added in order to enhance the organoleptic characteristics of food and culinary dishes, making them more attractive for consumers. The use of illicit cheap colourants might be profitable along the food supply chain, posing undue risks to human health. This work evaluates the feasibility of NIR spectroscopy with chemometrics as a rapid, simple, non-destructive and affordable screening tool to determine the presence of Sudan I, II, III, IV and Para-red dyes in paprika. The dataset comprised unadulterated and adulterated samples with the five studied dyes at different concentration levels. Several multivariate classification models were built with Linear Discriminant Analysis (LDA) and different machine learning techniques. Preliminary results show that a classifier based on only six wavenumbers is able to determine the presence of some of these dyes in food samples in levels that may represent risk to human health. Sensitivities and specificities above 90% were obtained in almost all cases. These results show the feasibility of inexpensive and portable devices that can be useful for screening out adulterated stock along the food chain supply.
Palabras clave: FEW-VARIABLES SENSING , MACHINE LEARNING ANALYSIS , NIR , PAPRIKA ADULTERATION , SCREENING METHODS , SUDAN DYES
Ver el registro completo
 
Archivos asociados
Tamaño: 1.357Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/112947
URL: https://www.tandfonline.com/doi/full/10.1080/19440049.2019.1619940
DOI: http://dx.doi.org/10.1080/19440049.2019.1619940
Colecciones
Articulos(CCT - BAHIA BLANCA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Articulos(CESIMAR)
Articulos de CENTRO PARA EL ESTUDIO DE SISTEMAS MARINOS
Articulos(INQUISUR)
Articulos de INST.DE QUIMICA DEL SUR
Citación
Trentanni-hansen, Gimena Jessica; Almonacid, Jonathan Samuel; Albertengo, Liliana; Rodriguez, Maria Susana; Di Anibal, Carolina Vanesa; et al.; NIR-based Sudan I to IV and Para-Red food adulterants screening; Taylor & Francis; Food Additives and Contaminants: Part A; 36; 8; 10-6-2019; 1163-1172
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES