Mostrar el registro sencillo del ítem
dc.contributor.author
Damiani, Lucía

dc.contributor.author
Diaz, Ivan Ariel

dc.contributor.author
Iparraguirre, Javier

dc.contributor.author
Blanco, Anibal Manuel

dc.date.available
2020-03-17T22:13:50Z
dc.date.issued
2020-03
dc.identifier.citation
Damiani, Lucía; Diaz, Ivan Ariel; Iparraguirre, Javier; Blanco, Anibal Manuel; Accelerated particle swarm optimization with explicit consideration of model constraints; Springer; Cluster Computing-the Journal Of Networks Software Tools And Applications; 23; 1; 3-2020; 149-164
dc.identifier.issn
1386-7857
dc.identifier.uri
http://hdl.handle.net/11336/99964
dc.description.abstract
Population based metaheuristic can benefit from explicit parallelization in order to address complex numerical optimization problems. Typical realistic problems usually involve non-linear functions and many constraints, making the identification of global optimal solutions mathematically challenging and computationally expensive. In this work, a GPU based parallelized version of the Particle Swarm Optimization technique is proposed. The main contribution is the explicit consideration of equality and inequality constraints of general type, rather than addressing only box constrained models as typically done in acceleration studies of optimization algorithms. The implementation is tested on a set of optimization problems that serve as benchmark. Speedups averaging 299x were obtained with a single GPU on a standard PC using the PyCUDA technology. Satisfactory feasibility and optimality rates are also achieved, although a standard parameterization was adopted for all the experiments. Additional results are reported on a small set of difficult problems involving bilinear non-linearities.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
GPU
dc.subject
NUMERICAL OPTIMIZATION
dc.subject
PARTICLE SWARM OPTIMIZATION
dc.subject.classification
Ingeniería de Procesos Químicos

dc.subject.classification
Ingeniería Química

dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS

dc.title
Accelerated particle swarm optimization with explicit consideration of model constraints
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-02-26T20:21:21Z
dc.journal.volume
23
dc.journal.number
1
dc.journal.pagination
149-164
dc.journal.pais
Alemania

dc.journal.ciudad
Berlín
dc.description.fil
Fil: Damiani, Lucía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
dc.description.fil
Fil: Diaz, Ivan Ariel. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina
dc.description.fil
Fil: Iparraguirre, Javier. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina
dc.description.fil
Fil: Blanco, Anibal Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
dc.journal.title
Cluster Computing-the Journal Of Networks Software Tools And Applications

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10586-019-02933-1
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10586-019-02933-1
Archivos asociados