Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Accelerated particle swarm optimization with explicit consideration of model constraints

Damiani, LucíaIcon ; Diaz, Ivan Ariel; Iparraguirre, Javier; Blanco, Anibal ManuelIcon
Fecha de publicación: 03/2020
Editorial: Springer
Revista: Cluster Computing-the Journal Of Networks Software Tools And Applications
ISSN: 1386-7857
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería de Procesos Químicos

Resumen

Population based metaheuristic can benefit from explicit parallelization in order to address complex numerical optimization problems. Typical realistic problems usually involve non-linear functions and many constraints, making the identification of global optimal solutions mathematically challenging and computationally expensive. In this work, a GPU based parallelized version of the Particle Swarm Optimization technique is proposed. The main contribution is the explicit consideration of equality and inequality constraints of general type, rather than addressing only box constrained models as typically done in acceleration studies of optimization algorithms. The implementation is tested on a set of optimization problems that serve as benchmark. Speedups averaging 299x were obtained with a single GPU on a standard PC using the PyCUDA technology. Satisfactory feasibility and optimality rates are also achieved, although a standard parameterization was adopted for all the experiments. Additional results are reported on a small set of difficult problems involving bilinear non-linearities.
Palabras clave: GPU , NUMERICAL OPTIMIZATION , PARTICLE SWARM OPTIMIZATION
Ver el registro completo
 
Archivos asociados
Tamaño: 984.8Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/99964
DOI: http://dx.doi.org/10.1007/s10586-019-02933-1
URL: https://link.springer.com/article/10.1007%2Fs10586-019-02933-1
Colecciones
Articulos(PLAPIQUI)
Articulos de PLANTA PILOTO DE INGENIERIA QUIMICA (I)
Citación
Damiani, Lucía; Diaz, Ivan Ariel; Iparraguirre, Javier; Blanco, Anibal Manuel; Accelerated particle swarm optimization with explicit consideration of model constraints; Springer; Cluster Computing-the Journal Of Networks Software Tools And Applications; 23; 1; 3-2020; 149-164
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES