Mostrar el registro sencillo del ítem
dc.contributor.author
Antezana, Jorge Abel
dc.contributor.author
Pujals, Enrique
dc.contributor.author
Stojanoff, Demetrio
dc.date.available
2020-03-17T16:39:34Z
dc.date.issued
2007-12-01
dc.identifier.citation
Antezana, Jorge Abel; Pujals, Enrique; Stojanoff, Demetrio; Convergence of the iterated Aluthge transform sequence for diagonalizable matrices; Academic Press Inc Elsevier Science; Advances in Mathematics; 216; 1; 1-12-2007; 255-278
dc.identifier.issn
0001-8708
dc.identifier.uri
http://hdl.handle.net/11336/99841
dc.description.abstract
Given an r × r complex matrix T, if T = U | T | is the polar decomposition of T, then, the Aluthge transform is defined byΔ (T) = | T |1 / 2 U | T |1 / 2 . Let Δn (T) denote the n-times iterated Aluthge transform of T, i.e. Δ0 (T) = T and Δn (T) = Δ (Δn - 1 (T)), n ∈ N. We prove that the sequence {Δn (T)}n ∈ N converges for every r × r diagonalizable matrix T. We show that the limit Δ∞ (ṡ) is a map of class C∞ on the similarity orbit of a diagonalizable matrix, and on the (open and dense) set of r × r matrices with r different eigenvalues.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Academic Press Inc Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
ALUTHGE TRANSFORM
dc.subject
POLAR DECOMPOSITION
dc.subject
SIMILARITY ORBIT
dc.subject
STABLE MANIFOLD THEOREM
dc.subject.classification
Otras Matemáticas
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Convergence of the iterated Aluthge transform sequence for diagonalizable matrices
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-02-18T16:16:40Z
dc.journal.volume
216
dc.journal.number
1
dc.journal.pagination
255-278
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Antezana, Jorge Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
dc.description.fil
Fil: Pujals, Enrique. Instituto Nacional de Matemática Pura e Aplicada; Brasil
dc.description.fil
Fil: Stojanoff, Demetrio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
dc.journal.title
Advances in Mathematics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.aim.2007.05.009
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/math/0604283
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/journal/advances-in-mathematics/vol/216/issue/1
Archivos asociados