Artículo
Convergence of the iterated Aluthge transform sequence for diagonalizable matrices
Fecha de publicación:
01/12/2007
Editorial:
Academic Press Inc Elsevier Science
Revista:
Advances in Mathematics
ISSN:
0001-8708
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Given an r × r complex matrix T, if T = U | T | is the polar decomposition of T, then, the Aluthge transform is defined byΔ (T) = | T |1 / 2 U | T |1 / 2 . Let Δn (T) denote the n-times iterated Aluthge transform of T, i.e. Δ0 (T) = T and Δn (T) = Δ (Δn - 1 (T)), n ∈ N. We prove that the sequence {Δn (T)}n ∈ N converges for every r × r diagonalizable matrix T. We show that the limit Δ∞ (ṡ) is a map of class C∞ on the similarity orbit of a diagonalizable matrix, and on the (open and dense) set of r × r matrices with r different eigenvalues.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Antezana, Jorge Abel; Pujals, Enrique; Stojanoff, Demetrio; Convergence of the iterated Aluthge transform sequence for diagonalizable matrices; Academic Press Inc Elsevier Science; Advances in Mathematics; 216; 1; 1-12-2007; 255-278
Compartir
Altmétricas