Mostrar el registro sencillo del ítem

dc.contributor.author
Grings, Francisco Matias  
dc.contributor.author
Roitberg, Esteban Gabriel  
dc.contributor.author
Barraza Bernadas, Verónica Daniela  
dc.date.available
2020-03-11T13:54:26Z  
dc.date.issued
2020-02  
dc.identifier.citation
Grings, Francisco Matias; Roitberg, Esteban Gabriel; Barraza Bernadas, Verónica Daniela; EVI Time-Series Breakpoint Detection Using Convolutional Networks for Online Deforestation Monitoring in Chaco Forest; Institute of Electrical and Electronics Engineers; Ieee Transactions On Geoscience And Remote Sensing; 58; 2; 2-2020; 1303-1312  
dc.identifier.issn
0196-2892  
dc.identifier.uri
http://hdl.handle.net/11336/99094  
dc.description.abstract
The Dry Chaco Forest has the highest absolute deforestation rates of all Argentinian forests (current deforestation rate of 150 000 ha yr-1, 0.85% yr-1). The deforestation process is seen as a breakpoint in the enhanced vegetation index (EVI) time series, associated with the change from a typical forest phenology pattern to something else (e.g., bare soil, pasture, and cropland). Therefore, to monitor this process, a near real-time time-series breakpoint-detection model is needed. In this article, we exploited the 18-year-long MODIS EVI time-series data to train a temporal pattern classification model based on convolutional neural networks. Model architecture parameters (optimizer, number of hidden layers, number of neurons, and so on) were selected using an optimization procedure. The trained model then tries to estimate the probability that a given 'time-series segment' corresponds to a deforestation event. The model was validated using in situ data derived from high-resolution images. Results are promising, since the model presents good performance for the validation data set [F1-score = 0.85, {fpr} = 0.0012 (of the order of the true deforestation rate), {tpr} = 0.8 , for a sample size = 50 × 10{3} ] and average performance in a yearly analysis (F1-score = 0.6, sample size = 1120 × 10{3} ). Model performance was studied using two diagnostic tools: activation maps and model ensemble error estimations. Results show that proposed model presents good extrapolation capabilities, but its maximum F1-score is bounded by error in the available data set (in particular, mislabeled deforestation events).  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Institute of Electrical and Electronics Engineers  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
DEFORESTATION MONITORING  
dc.subject
PHENOLOGY  
dc.subject
TIME-SERIES ANALYSIS  
dc.subject.classification
Geociencias multidisciplinaria  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
EVI Time-Series Breakpoint Detection Using Convolutional Networks for Online Deforestation Monitoring in Chaco Forest  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-12-11T20:12:50Z  
dc.journal.volume
58  
dc.journal.number
2  
dc.journal.pagination
1303-1312  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
New York  
dc.description.fil
Fil: Grings, Francisco Matias. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina  
dc.description.fil
Fil: Roitberg, Esteban Gabriel. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina  
dc.description.fil
Fil: Barraza Bernadas, Verónica Daniela. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina  
dc.journal.title
Ieee Transactions On Geoscience And Remote Sensing  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/8882490/  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/TGRS.2019.2945719