Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

EVI Time-Series Breakpoint Detection Using Convolutional Networks for Online Deforestation Monitoring in Chaco Forest

Grings, Francisco MatiasIcon ; Roitberg, Esteban GabrielIcon ; Barraza Bernadas, Verónica DanielaIcon
Fecha de publicación: 02/2020
Editorial: Institute of Electrical and Electronics Engineers
Revista: Ieee Transactions On Geoscience And Remote Sensing
ISSN: 0196-2892
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Geociencias multidisciplinaria

Resumen

The Dry Chaco Forest has the highest absolute deforestation rates of all Argentinian forests (current deforestation rate of 150 000 ha yr-1, 0.85% yr-1). The deforestation process is seen as a breakpoint in the enhanced vegetation index (EVI) time series, associated with the change from a typical forest phenology pattern to something else (e.g., bare soil, pasture, and cropland). Therefore, to monitor this process, a near real-time time-series breakpoint-detection model is needed. In this article, we exploited the 18-year-long MODIS EVI time-series data to train a temporal pattern classification model based on convolutional neural networks. Model architecture parameters (optimizer, number of hidden layers, number of neurons, and so on) were selected using an optimization procedure. The trained model then tries to estimate the probability that a given 'time-series segment' corresponds to a deforestation event. The model was validated using in situ data derived from high-resolution images. Results are promising, since the model presents good performance for the validation data set [F1-score = 0.85, {fpr} = 0.0012 (of the order of the true deforestation rate), {tpr} = 0.8 , for a sample size = 50 × 10{3} ] and average performance in a yearly analysis (F1-score = 0.6, sample size = 1120 × 10{3} ). Model performance was studied using two diagnostic tools: activation maps and model ensemble error estimations. Results show that proposed model presents good extrapolation capabilities, but its maximum F1-score is bounded by error in the available data set (in particular, mislabeled deforestation events).
Palabras clave: DEFORESTATION MONITORING , PHENOLOGY , TIME-SERIES ANALYSIS
Ver el registro completo
 
Archivos asociados
Tamaño: 7.960Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/99094
URL: https://ieeexplore.ieee.org/document/8882490/
DOI: http://dx.doi.org/10.1109/TGRS.2019.2945719
Colecciones
Articulos(IAFE)
Articulos de INST.DE ASTRONOMIA Y FISICA DEL ESPACIO(I)
Citación
Grings, Francisco Matias; Roitberg, Esteban Gabriel; Barraza Bernadas, Verónica Daniela; EVI Time-Series Breakpoint Detection Using Convolutional Networks for Online Deforestation Monitoring in Chaco Forest; Institute of Electrical and Electronics Engineers; Ieee Transactions On Geoscience And Remote Sensing; 58; 2; 2-2020; 1303-1312
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES