Mostrar el registro sencillo del ítem

dc.contributor.author
Fernandez Bonder, Julian  
dc.contributor.author
Martinez, Sandra Rita  
dc.contributor.author
Wolanski, Noemi Irene  
dc.date.available
2020-03-04T22:40:15Z  
dc.date.issued
2009-01  
dc.identifier.citation
Fernandez Bonder, Julian; Martinez, Sandra Rita; Wolanski, Noemi Irene; A free boundary problem for the p (x)-Laplacian; Pergamon-Elsevier Science Ltd; Journal Of Nonlinear Analysis; 72; 2; 1-2009; 1078-1103  
dc.identifier.issn
0362-546X  
dc.identifier.uri
http://hdl.handle.net/11336/98812  
dc.description.abstract
We consider the optimization problem of minimizing ∫Ω frac(1, p (x)) | ∇ u |p (x) + λ (x) χ{u > 0} d x in the class of functions W1, p ({dot operator}) (Ω) with u - φ0 ∈ W01, p ({dot operator}) (Ω), for a given φ0 ≥ 0 and bounded. W1, p ({dot operator}) (Ω) is the class of weakly differentiable functions with ∫Ω | ∇ u |p (x) d x < ∞. We prove that every solution u is locally Lipschitz continuous, that it is a solution to a free boundary problem and that the free boundary, Ω ∩ ∂ {u > 0}, is a regular surface.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
FREE BOUNDARIES  
dc.subject
MINIMIZATION  
dc.subject
VARIABLE EXPONENT SPACES  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A free boundary problem for the p (x)-Laplacian  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-02-27T18:49:46Z  
dc.journal.volume
72  
dc.journal.number
2  
dc.journal.pagination
1078-1103  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Fernandez Bonder, Julian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina  
dc.description.fil
Fil: Martinez, Sandra Rita. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Wolanski, Noemi Irene. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina  
dc.journal.title
Journal Of Nonlinear Analysis  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0362546X09009419  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.na.2009.07.048  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0902.3216