Artículo
A free boundary problem for the p (x)-Laplacian
Fecha de publicación:
01/2009
Editorial:
Pergamon-Elsevier Science Ltd
Revista:
Journal Of Nonlinear Analysis
ISSN:
0362-546X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We consider the optimization problem of minimizing ∫Ω frac(1, p (x)) | ∇ u |p (x) + λ (x) χ{u > 0} d x in the class of functions W1, p ({dot operator}) (Ω) with u - φ0 ∈ W01, p ({dot operator}) (Ω), for a given φ0 ≥ 0 and bounded. W1, p ({dot operator}) (Ω) is the class of weakly differentiable functions with ∫Ω | ∇ u |p (x) d x < ∞. We prove that every solution u is locally Lipschitz continuous, that it is a solution to a free boundary problem and that the free boundary, Ω ∩ ∂ {u > 0}, is a regular surface.
Palabras clave:
FREE BOUNDARIES
,
MINIMIZATION
,
VARIABLE EXPONENT SPACES
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Fernandez Bonder, Julian; Martinez, Sandra Rita; Wolanski, Noemi Irene; A free boundary problem for the p (x)-Laplacian; Pergamon-Elsevier Science Ltd; Journal Of Nonlinear Analysis; 72; 2; 1-2009; 1078-1103
Compartir
Altmétricas