Mostrar el registro sencillo del ítem

dc.contributor.author
Molter, Ursula Maria  
dc.contributor.author
Rela, Ezequiel  
dc.date.available
2020-03-03T17:51:48Z  
dc.date.issued
2010-01  
dc.identifier.citation
Molter, Ursula Maria; Rela, Ezequiel; Improving dimension estimates for Furstenberg-type sets; Academic Press Inc Elsevier Science; Advances in Mathematics; 223; 2; 1-2010; 672-688  
dc.identifier.issn
0001-8708  
dc.identifier.uri
http://hdl.handle.net/11336/98701  
dc.description.abstract
In this paper we study the problem of estimating the generalized Hausdorff dimension of Furstenberg sets in the plane. For α ∈ (0, 1], a set F in the plane is said to be an α-Furstenberg set if for each direction e there is a line segment ℓe in the direction of e for which dimH (ℓe ∩ F) ≥ α. It is well known that dimH (F) ≥ max {2 α, α + frac(1, 2)}, and it is also known that these sets can have zero measure at their critical dimension. By looking at general Hausdorff measures Hh defined for doubling functions, that need not be power laws, we obtain finer estimates for the size of the more general h-Furstenberg sets. Further, this approach allow us to sharpen the known bounds on the dimension of classical Furstenberg sets. The main difficulty we had to overcome, was that if Hh (F) = 0, there always exists g ≺ h such that Hg (F) = 0 (here ≺ refers to the natural ordering on general Hausdorff dimension functions). Hence, in order to estimate the measure of general Furstenberg sets, we have to consider dimension functions that are a true step down from the critical one. We provide rather precise estimates on the size of this step and by doing so, we can include a family of zero dimensional Furstenberg sets associated to dimension functions that grow faster than any power function at zero. With some additional growth conditions on these zero dimensional functions, we extend the known inequalities to include the endpoint α = 0.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Academic Press Inc Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
DIMENSION FUNCTION  
dc.subject
FURSTENBERG SETS  
dc.subject
HAUSDORFF DIMENSION  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Improving dimension estimates for Furstenberg-type sets  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-02-27T18:48:32Z  
dc.journal.volume
223  
dc.journal.number
2  
dc.journal.pagination
672-688  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Molter, Ursula Maria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Rela, Ezequiel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Advances in Mathematics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0001870809002667  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.aim.2009.08.019