Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Improving dimension estimates for Furstenberg-type sets

Molter, Ursula MariaIcon ; Rela, EzequielIcon
Fecha de publicación: 01/2010
Editorial: Academic Press Inc Elsevier Science
Revista: Advances in Mathematics
ISSN: 0001-8708
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Pura

Resumen

In this paper we study the problem of estimating the generalized Hausdorff dimension of Furstenberg sets in the plane. For α ∈ (0, 1], a set F in the plane is said to be an α-Furstenberg set if for each direction e there is a line segment ℓe in the direction of e for which dimH (ℓe ∩ F) ≥ α. It is well known that dimH (F) ≥ max {2 α, α + frac(1, 2)}, and it is also known that these sets can have zero measure at their critical dimension. By looking at general Hausdorff measures Hh defined for doubling functions, that need not be power laws, we obtain finer estimates for the size of the more general h-Furstenberg sets. Further, this approach allow us to sharpen the known bounds on the dimension of classical Furstenberg sets. The main difficulty we had to overcome, was that if Hh (F) = 0, there always exists g ≺ h such that Hg (F) = 0 (here ≺ refers to the natural ordering on general Hausdorff dimension functions). Hence, in order to estimate the measure of general Furstenberg sets, we have to consider dimension functions that are a true step down from the critical one. We provide rather precise estimates on the size of this step and by doing so, we can include a family of zero dimensional Furstenberg sets associated to dimension functions that grow faster than any power function at zero. With some additional growth conditions on these zero dimensional functions, we extend the known inequalities to include the endpoint α = 0.
Palabras clave: DIMENSION FUNCTION , FURSTENBERG SETS , HAUSDORFF DIMENSION
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 228.0Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/98701
URL: https://www.sciencedirect.com/science/article/pii/S0001870809002667
DOI: http://dx.doi.org/10.1016/j.aim.2009.08.019
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Molter, Ursula Maria; Rela, Ezequiel; Improving dimension estimates for Furstenberg-type sets; Academic Press Inc Elsevier Science; Advances in Mathematics; 223; 2; 1-2010; 672-688
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES