Mostrar el registro sencillo del ítem

dc.contributor.author
Cendra, Hernan  
dc.contributor.author
Marsden, Jerrold E.  
dc.contributor.author
Pekarsky, Sergey  
dc.contributor.author
Ratiu, Tudor S.  
dc.date.available
2020-02-28T14:30:14Z  
dc.date.issued
2003-07  
dc.identifier.citation
Cendra, Hernan; Marsden, Jerrold E.; Pekarsky, Sergey; Ratiu, Tudor S.; Variational Principles for Lie-Poisson and Hamilton-Poincaré Equations; Independent Univ Moscow; Moscow Mathematical Journal; 3; 3; 7-2003; 833-867  
dc.identifier.issn
1609-3321  
dc.identifier.uri
http://hdl.handle.net/11336/98567  
dc.description.abstract
As is well-known, there is a variational principle for theEuler–Poincar ́e equations on a Lie algebragof a Lie groupGobtainedby reducing Hamilton’s principle onGby the action ofGby, say, leftmultiplication. The purpose of this paper is to give a variational prin-ciple for the Lie–Poisson equations ong∗, the dual ofg, and also togeneralize this construction.The more general situation is that in which the original configura-tion space is not a Lie group, but rather a configuration manifoldQon which a Lie groupGacts freely and properly, so thatQ→Q/Gbecomes a principal bundle. Starting with a Lagrangian system onTQinvariant under the tangent lifted action ofG, the reduced equations on(TQ)/G, appropriately identified, are the Lagrange–Poincar ́e equations.Similarly, if we start with a Hamiltonian system onT∗Q, invariant un-der the cotangent lifted action ofG, the resulting reduced equations on(T∗Q)/Gare called the Hamilton–Poincar ́e equations.Amongst our new results, we derive a variational structure for theHamilton–Poincar ́e equations, give a formula for the Poisson structureon these reduced spaces that simplifies previous formulas of Montgomery,and give a new representation for the symplectic structure on the asso-ciated symplectic leaves. We illustrate the formalism with a simple, butinteresting example, that of a rigid body with internal rotors.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Independent Univ Moscow  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
VARIATIONAL PRINCIPLES  
dc.subject
LIEPOISSON EQUATIONS  
dc.subject
HAMILTONPOINCARE EQUATIONS  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Variational Principles for Lie-Poisson and Hamilton-Poincaré Equations  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-12-18T13:55:51Z  
dc.identifier.eissn
1609-4514  
dc.journal.volume
3  
dc.journal.number
3  
dc.journal.pagination
833-867  
dc.journal.pais
Rusia  
dc.description.fil
Fil: Cendra, Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentina  
dc.description.fil
Fil: Marsden, Jerrold E.. Institute of Technology; Estados Unidos  
dc.description.fil
Fil: Pekarsky, Sergey. Moody’s Investors Service; Estados Unidos  
dc.description.fil
Fil: Ratiu, Tudor S.. École Polytechnique Fédérale de Lausanne. Centre Bernoulli; Suiza  
dc.journal.title
Moscow Mathematical Journal  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.cds.caltech.edu/~marsden/bib/2003/19-CeMaPeRa2003/  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.cds.caltech.edu/~marsden/bib/2003/19-CeMaPeRa2003/CeMaPeRa2003.pdf