Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Variational Principles for Lie-Poisson and Hamilton-Poincaré Equations

Cendra, HernanIcon ; Marsden, Jerrold E.; Pekarsky, Sergey; Ratiu, Tudor S.
Fecha de publicación: 07/2003
Editorial: Independent Univ Moscow
Revista: Moscow Mathematical Journal
ISSN: 1609-3321
e-ISSN: 1609-4514
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Pura

Resumen

As is well-known, there is a variational principle for theEuler–Poincar ́e equations on a Lie algebragof a Lie groupGobtainedby reducing Hamilton’s principle onGby the action ofGby, say, leftmultiplication. The purpose of this paper is to give a variational prin-ciple for the Lie–Poisson equations ong∗, the dual ofg, and also togeneralize this construction.The more general situation is that in which the original configura-tion space is not a Lie group, but rather a configuration manifoldQon which a Lie groupGacts freely and properly, so thatQ→Q/Gbecomes a principal bundle. Starting with a Lagrangian system onTQinvariant under the tangent lifted action ofG, the reduced equations on(TQ)/G, appropriately identified, are the Lagrange–Poincar ́e equations.Similarly, if we start with a Hamiltonian system onT∗Q, invariant un-der the cotangent lifted action ofG, the resulting reduced equations on(T∗Q)/Gare called the Hamilton–Poincar ́e equations.Amongst our new results, we derive a variational structure for theHamilton–Poincar ́e equations, give a formula for the Poisson structureon these reduced spaces that simplifies previous formulas of Montgomery,and give a new representation for the symplectic structure on the asso-ciated symplectic leaves. We illustrate the formalism with a simple, butinteresting example, that of a rigid body with internal rotors.
Palabras clave: VARIATIONAL PRINCIPLES , LIEPOISSON EQUATIONS , HAMILTONPOINCARE EQUATIONS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 401.4Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/98567
URL: http://www.cds.caltech.edu/~marsden/bib/2003/19-CeMaPeRa2003/
URL: http://www.cds.caltech.edu/~marsden/bib/2003/19-CeMaPeRa2003/CeMaPeRa2003.pdf
Colecciones
Articulos(INMABB)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Citación
Cendra, Hernan; Marsden, Jerrold E.; Pekarsky, Sergey; Ratiu, Tudor S.; Variational Principles for Lie-Poisson and Hamilton-Poincaré Equations; Independent Univ Moscow; Moscow Mathematical Journal; 3; 3; 7-2003; 833-867
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES