Mostrar el registro sencillo del ítem
dc.contributor.author
del Pezzo, Leandro Martin
dc.contributor.author
Rossi, Julio Daniel
dc.date.available
2020-02-21T15:15:56Z
dc.date.issued
2018-12
dc.identifier.citation
del Pezzo, Leandro Martin; Rossi, Julio Daniel; Eigenvalues for systems of fractional p-Laplacians; Rocky Mt Math Consortium; Rocky Mountain Journal Of Mathematics; 48; 4; 12-2018; 1077-1104
dc.identifier.issn
0035-7596
dc.identifier.uri
http://hdl.handle.net/11336/98262
dc.description.abstract
We study the eigenvalue problem for a system of fractional p-Laplacians, that is, (-Δp)ru=λαp|u|α-2u|v|β(-Δp)sv=λβp|u|α|v|β-2vu=v=0in Ω,in Ω,in Ωc=RNΩ. We show that there is a first (smallest) eigenvalue that is simple and has associated eigenpairs composed of positive and bounded functions. Moreover, there is a sequence of eigenvalues λn such that λn→∞ as n→∞ . In addition, we study the limit as p→∞ of the first eigenvalue, λ1,p, and we obtain [λ1,p]1/p→Λ1,∞ as p→∞, where Λ1,∞=inf(u,v){max{[u]r,∞[v]s,∞}∥|u|Γ|v|1-Γ∥L∞(Ω)}=[1R(Ω)](1-Γ)s+Γr. Here, R(Ω):= maxx∈Ω dist(x,∂Ω) and [w]t,∞:=sup(x,y)∈Ω|w(y)-w(x)||x-y|t. Finally, we identify a PDE problem satisfied, in the viscosity sense, by any possible uniform limit along subsequences of the eigenpairs.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Rocky Mt Math Consortium
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
EIGENVALUE PROBLEMS
dc.subject
FRACTIONAL OPERATORS
dc.subject
P-LAPLACIAN
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Eigenvalues for systems of fractional p-Laplacians
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-02-18T16:09:00Z
dc.journal.volume
48
dc.journal.number
4
dc.journal.pagination
1077-1104
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: del Pezzo, Leandro Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
dc.description.fil
Fil: Rossi, Julio Daniel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Rocky Mountain Journal Of Mathematics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/euclid.rmjm/1538272824
Archivos asociados