Mostrar el registro sencillo del ítem

dc.contributor.author
del Pezzo, Leandro Martin  
dc.contributor.author
Rossi, Julio Daniel  
dc.date.available
2020-02-21T15:15:56Z  
dc.date.issued
2018-12  
dc.identifier.citation
del Pezzo, Leandro Martin; Rossi, Julio Daniel; Eigenvalues for systems of fractional p-Laplacians; Rocky Mt Math Consortium; Rocky Mountain Journal Of Mathematics; 48; 4; 12-2018; 1077-1104  
dc.identifier.issn
0035-7596  
dc.identifier.uri
http://hdl.handle.net/11336/98262  
dc.description.abstract
We study the eigenvalue problem for a system of fractional p-Laplacians, that is, (-Δp)ru=λαp|u|α-2u|v|β(-Δp)sv=λβp|u|α|v|β-2vu=v=0in Ω,in Ω,in Ωc=RNΩ. We show that there is a first (smallest) eigenvalue that is simple and has associated eigenpairs composed of positive and bounded functions. Moreover, there is a sequence of eigenvalues λn such that λn→∞ as n→∞ . In addition, we study the limit as p→∞ of the first eigenvalue, λ1,p, and we obtain [λ1,p]1/p→Λ1,∞ as p→∞, where Λ1,∞=inf(u,v){max{[u]r,∞[v]s,∞}∥|u|Γ|v|1-Γ∥L∞(Ω)}=[1R(Ω)](1-Γ)s+Γr. Here, R(Ω):= maxx∈Ω dist(x,∂Ω) and [w]t,∞:=sup(x,y)∈Ω|w(y)-w(x)||x-y|t. Finally, we identify a PDE problem satisfied, in the viscosity sense, by any possible uniform limit along subsequences of the eigenpairs.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Rocky Mt Math Consortium  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
EIGENVALUE PROBLEMS  
dc.subject
FRACTIONAL OPERATORS  
dc.subject
P-LAPLACIAN  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Eigenvalues for systems of fractional p-Laplacians  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-02-18T16:09:00Z  
dc.journal.volume
48  
dc.journal.number
4  
dc.journal.pagination
1077-1104  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: del Pezzo, Leandro Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina  
dc.description.fil
Fil: Rossi, Julio Daniel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Rocky Mountain Journal Of Mathematics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/euclid.rmjm/1538272824