Artículo
Eigenvalues for systems of fractional p-Laplacians
Fecha de publicación:
12/2018
Editorial:
Rocky Mt Math Consortium
Revista:
Rocky Mountain Journal Of Mathematics
ISSN:
0035-7596
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We study the eigenvalue problem for a system of fractional p-Laplacians, that is, (-Δp)ru=λαp|u|α-2u|v|β(-Δp)sv=λβp|u|α|v|β-2vu=v=0in Ω,in Ω,in Ωc=RNΩ. We show that there is a first (smallest) eigenvalue that is simple and has associated eigenpairs composed of positive and bounded functions. Moreover, there is a sequence of eigenvalues λn such that λn→∞ as n→∞ . In addition, we study the limit as p→∞ of the first eigenvalue, λ1,p, and we obtain [λ1,p]1/p→Λ1,∞ as p→∞, where Λ1,∞=inf(u,v){max{[u]r,∞[v]s,∞}∥|u|Γ|v|1-Γ∥L∞(Ω)}=[1R(Ω)](1-Γ)s+Γr. Here, R(Ω):= maxx∈Ω dist(x,∂Ω) and [w]t,∞:=sup(x,y)∈Ω|w(y)-w(x)||x-y|t. Finally, we identify a PDE problem satisfied, in the viscosity sense, by any possible uniform limit along subsequences of the eigenpairs.
Palabras clave:
EIGENVALUE PROBLEMS
,
FRACTIONAL OPERATORS
,
P-LAPLACIAN
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
del Pezzo, Leandro Martin; Rossi, Julio Daniel; Eigenvalues for systems of fractional p-Laplacians; Rocky Mt Math Consortium; Rocky Mountain Journal Of Mathematics; 48; 4; 12-2018; 1077-1104
Compartir