Mostrar el registro sencillo del ítem

dc.contributor.author
Yannibelli, Virginia Daniela  
dc.contributor.author
Amandi, Analia Adriana  
dc.date.available
2020-02-12T21:29:43Z  
dc.date.issued
2011-07  
dc.identifier.citation
Yannibelli, Virginia Daniela; Amandi, Analia Adriana; A knowledge-based evolutionary assistant to software development project scheduling; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 38; 7; 7-2011; 8403-8413  
dc.identifier.issn
0957-4174  
dc.identifier.uri
http://hdl.handle.net/11336/97349  
dc.description.abstract
The scheduling of software development projects is a central, non-trivial and costly task for software companies. This task is not exempt of erroneous decisions caused by human limitations inherent to project managers. In this paper, we propose a knowledge-based evolutionary approach with the aim of assisting to project managers at the early stage of scheduling software projects. Given a software project to be scheduled, the approach automatically designs feasible schedules for the project, and evaluates each designed schedule according to an optimization objective that is priority for managers at the mentioned stage. Our objective is to assign the most effective set of employees to each project activity. For this reason, the evaluation of designed schedules in our approach is developed based on available knowledge about the competence of the employees involved in each schedule. This knowledge arises from historical information about the participation of the employees in already executed projects. In order to evaluate the performance of our evolutionary approach, we present computational experiments developed over eight different sets of problem instances. The obtained results are promising since this approach has reached an optimal level of effectivity on seven of the eight mentioned sets, and a high level of effectivity on the remaining set.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
GENETIC ALGORITHMS  
dc.subject
HETEROGENEOUS EFFECTIVITIES  
dc.subject
HUMAN RESOURCE ASSIGNMENT  
dc.subject
MULTI-SKILLED RESOURCES  
dc.subject
PROJECT SCHEDULING  
dc.subject
SOFTWARE PROJECTS  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A knowledge-based evolutionary assistant to software development project scheduling  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-01-22T20:55:20Z  
dc.journal.volume
38  
dc.journal.number
7  
dc.journal.pagination
8403-8413  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Yannibelli, Virginia Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.description.fil
Fil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.journal.title
Expert Systems with Applications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.eswa.2011.01.035  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0957417411000558