Mostrar el registro sencillo del ítem
dc.contributor.author
Yannibelli, Virginia Daniela
dc.contributor.author
Amandi, Analia Adriana
dc.date.available
2020-02-12T21:29:43Z
dc.date.issued
2011-07
dc.identifier.citation
Yannibelli, Virginia Daniela; Amandi, Analia Adriana; A knowledge-based evolutionary assistant to software development project scheduling; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 38; 7; 7-2011; 8403-8413
dc.identifier.issn
0957-4174
dc.identifier.uri
http://hdl.handle.net/11336/97349
dc.description.abstract
The scheduling of software development projects is a central, non-trivial and costly task for software companies. This task is not exempt of erroneous decisions caused by human limitations inherent to project managers. In this paper, we propose a knowledge-based evolutionary approach with the aim of assisting to project managers at the early stage of scheduling software projects. Given a software project to be scheduled, the approach automatically designs feasible schedules for the project, and evaluates each designed schedule according to an optimization objective that is priority for managers at the mentioned stage. Our objective is to assign the most effective set of employees to each project activity. For this reason, the evaluation of designed schedules in our approach is developed based on available knowledge about the competence of the employees involved in each schedule. This knowledge arises from historical information about the participation of the employees in already executed projects. In order to evaluate the performance of our evolutionary approach, we present computational experiments developed over eight different sets of problem instances. The obtained results are promising since this approach has reached an optimal level of effectivity on seven of the eight mentioned sets, and a high level of effectivity on the remaining set.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Pergamon-Elsevier Science Ltd
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
GENETIC ALGORITHMS
dc.subject
HETEROGENEOUS EFFECTIVITIES
dc.subject
HUMAN RESOURCE ASSIGNMENT
dc.subject
MULTI-SKILLED RESOURCES
dc.subject
PROJECT SCHEDULING
dc.subject
SOFTWARE PROJECTS
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A knowledge-based evolutionary assistant to software development project scheduling
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-01-22T20:55:20Z
dc.journal.volume
38
dc.journal.number
7
dc.journal.pagination
8403-8413
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Yannibelli, Virginia Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
dc.description.fil
Fil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
dc.journal.title
Expert Systems with Applications
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.eswa.2011.01.035
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0957417411000558
Archivos asociados