Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A knowledge-based evolutionary assistant to software development project scheduling

Yannibelli, Virginia DanielaIcon ; Amandi, Analia AdrianaIcon
Fecha de publicación: 07/2011
Editorial: Pergamon-Elsevier Science Ltd
Revista: Expert Systems with Applications
ISSN: 0957-4174
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

The scheduling of software development projects is a central, non-trivial and costly task for software companies. This task is not exempt of erroneous decisions caused by human limitations inherent to project managers. In this paper, we propose a knowledge-based evolutionary approach with the aim of assisting to project managers at the early stage of scheduling software projects. Given a software project to be scheduled, the approach automatically designs feasible schedules for the project, and evaluates each designed schedule according to an optimization objective that is priority for managers at the mentioned stage. Our objective is to assign the most effective set of employees to each project activity. For this reason, the evaluation of designed schedules in our approach is developed based on available knowledge about the competence of the employees involved in each schedule. This knowledge arises from historical information about the participation of the employees in already executed projects. In order to evaluate the performance of our evolutionary approach, we present computational experiments developed over eight different sets of problem instances. The obtained results are promising since this approach has reached an optimal level of effectivity on seven of the eight mentioned sets, and a high level of effectivity on the remaining set.
Palabras clave: GENETIC ALGORITHMS , HETEROGENEOUS EFFECTIVITIES , HUMAN RESOURCE ASSIGNMENT , MULTI-SKILLED RESOURCES , PROJECT SCHEDULING , SOFTWARE PROJECTS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 567.8Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/97349
DOI: http://dx.doi.org/10.1016/j.eswa.2011.01.035
URL: https://www.sciencedirect.com/science/article/pii/S0957417411000558
Colecciones
Articulos(CCT - TANDIL)
Articulos de CTRO CIENTIFICO TECNOLOGICO CONICET - TANDIL
Articulos(ISISTAN)
Articulos de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Citación
Yannibelli, Virginia Daniela; Amandi, Analia Adriana; A knowledge-based evolutionary assistant to software development project scheduling; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 38; 7; 7-2011; 8403-8413
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES