Mostrar el registro sencillo del ítem

dc.contributor.author
Piccardi, Mónica Belén  
dc.contributor.author
Macchiavelli, Raúl  
dc.contributor.author
Funes, Ariel Capitaine  
dc.contributor.author
Bó, Gabriel A.  
dc.contributor.author
Balzarini, Monica Graciela  
dc.date.available
2020-02-12T20:16:31Z  
dc.date.issued
2017-05  
dc.identifier.citation
Piccardi, Mónica Belén; Macchiavelli, Raúl; Funes, Ariel Capitaine; Bó, Gabriel A.; Balzarini, Monica Graciela; Fitting milk production curves through nonlinear mixed models; Cambridge University Press; Journal of Dairy Research; 84; 2; 5-2017; 146-153  
dc.identifier.issn
0022-0299  
dc.identifier.uri
http://hdl.handle.net/11336/97338  
dc.description.abstract
The aim of this work was to fit and compare three non-linear models (Wood, Milkbot and diphasic) to model lactation curves from two approaches: with and without cow random effect. Knowing the behaviour of lactation curves is critical for decision-making in a dairy farm. Knowledge of the model of milk production progress along each lactation is necessary not only at the mean population level (dairy farm), but also at individual level (cow-lactation). The fits were made in a group of high production and reproduction dairy farms; in first and third lactations in cool seasons. A total of 2167 complete lactations were involved, of which 984 were first-lactations and the remaining ones, third lactations (19 382 milk yield tests). PROC NLMIXED in SAS was used to make the fits and estimate the model parameters. The diphasic model resulted to be computationally complex and barely practical. Regarding the classical Wood and MilkBot models, although the information criteria suggest the selection of MilkBot, the differences in the estimation of production indicators did not show a significant improvement. The Wood model was found to be a good option for fitting the expected value of lactation curves. Furthermore, the three models fitted better when the subject (cow) random effect was considered, which is related to magnitude of production. The random effect improved the predictive potential of the models, but it did not have a significant effect on the production indicators derived from the lactation curves, such as milk yield and days in milk to peak.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Cambridge University Press  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
COMPARISON CRITERIA  
dc.subject
ESTIMATION  
dc.subject
LACTATION CURVES  
dc.subject
RANDOM EFFECT  
dc.subject.classification
Otras Producción Animal y Lechería  
dc.subject.classification
Producción Animal y Lechería  
dc.subject.classification
CIENCIAS AGRÍCOLAS  
dc.title
Fitting milk production curves through nonlinear mixed models  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-02-12T17:49:18Z  
dc.journal.volume
84  
dc.journal.number
2  
dc.journal.pagination
146-153  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Cambridge  
dc.description.fil
Fil: Piccardi, Mónica Belén. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Departamento de Desarrollo Rural. Area de Estadística y Biometría; Argentina  
dc.description.fil
Fil: Macchiavelli, Raúl. Universidad de Puerto Rico; Puerto Rico  
dc.description.fil
Fil: Funes, Ariel Capitaine. DAIRYTECH; Argentina  
dc.description.fil
Fil: Bó, Gabriel A.. Universidad Nacional de Villa María; Argentina. Instituto de Reproducción Animal Córdoba; Argentina  
dc.description.fil
Fil: Balzarini, Monica Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Departamento de Desarrollo Rural. Area de Estadística y Biometría; Argentina  
dc.journal.title
Journal of Dairy Research  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1017/S0022029917000085  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/journal-of-dairy-research/article/fitting-milk-production-curves-through-nonlinear-mixed-models/77F777E343DA0569EE3C9DA66C55B951