Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Fitting milk production curves through nonlinear mixed models

Piccardi, Mónica BelénIcon ; Macchiavelli, Raúl; Funes, Ariel Capitaine; Bó, Gabriel A.; Balzarini, Monica GracielaIcon
Fecha de publicación: 05/2017
Editorial: Cambridge University Press
Revista: Journal of Dairy Research
ISSN: 0022-0299
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Producción Animal y Lechería

Resumen

The aim of this work was to fit and compare three non-linear models (Wood, Milkbot and diphasic) to model lactation curves from two approaches: with and without cow random effect. Knowing the behaviour of lactation curves is critical for decision-making in a dairy farm. Knowledge of the model of milk production progress along each lactation is necessary not only at the mean population level (dairy farm), but also at individual level (cow-lactation). The fits were made in a group of high production and reproduction dairy farms; in first and third lactations in cool seasons. A total of 2167 complete lactations were involved, of which 984 were first-lactations and the remaining ones, third lactations (19 382 milk yield tests). PROC NLMIXED in SAS was used to make the fits and estimate the model parameters. The diphasic model resulted to be computationally complex and barely practical. Regarding the classical Wood and MilkBot models, although the information criteria suggest the selection of MilkBot, the differences in the estimation of production indicators did not show a significant improvement. The Wood model was found to be a good option for fitting the expected value of lactation curves. Furthermore, the three models fitted better when the subject (cow) random effect was considered, which is related to magnitude of production. The random effect improved the predictive potential of the models, but it did not have a significant effect on the production indicators derived from the lactation curves, such as milk yield and days in milk to peak.
Palabras clave: COMPARISON CRITERIA , ESTIMATION , LACTATION CURVES , RANDOM EFFECT
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 241.4Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/97338
DOI: http://dx.doi.org/10.1017/S0022029917000085
URL: https://www.cambridge.org/core/journals/journal-of-dairy-research/article/fittin
Colecciones
Articulos(CCT - CORDOBA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Citación
Piccardi, Mónica Belén; Macchiavelli, Raúl; Funes, Ariel Capitaine; Bó, Gabriel A.; Balzarini, Monica Graciela; Fitting milk production curves through nonlinear mixed models; Cambridge University Press; Journal of Dairy Research; 84; 2; 5-2017; 146-153
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES