Mostrar el registro sencillo del ítem
dc.contributor.author
Cendra, Hernan
dc.contributor.author
Ibort, Alberto
dc.contributor.author
De Leòn, Manuel
dc.contributor.author
De Diego, David Martìn
dc.date.available
2020-02-10T15:46:47Z
dc.date.issued
2004-07-19
dc.identifier.citation
Cendra, Hernan; Ibort, Alberto; De Leòn, Manuel; De Diego, David Martìn; A generalization of Chetaev's principle for a class of higher order nonholonomic constraints; American Institute of Physics; Journal of Mathematical Physics; 45; 7; 19-7-2004; 2785-2801
dc.identifier.issn
0022-2488
dc.identifier.uri
http://hdl.handle.net/11336/97062
dc.description.abstract
The constraint distribution in nonholonomic mechanics has a double role. On the one hand, it is a kinematic constraint, that is, it is a restriction on the motion itself. On the other hand, it is also a restriction on the allowed variations when using D'Alembert's principle to derive the equations of motion. We will show that many systems of physical interest where D'Alembert's principle does not apply can be conveniently modeled within the general idea of the principle of virtual work by the introduction of both kinematic constraints and variational constraints as being independent entities. This includes, for example, elastic rolling bodies and pneumatic tires. Also, D'Alembert's principle and Chetaev's principle fall into this scheme. We emphasize the geometric point of view, avoiding the use of local coordinates, which is the appropriate setting for dealing with questions of global nature, like reduction.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Institute of Physics
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
RIGID BODY DYNAMICS
dc.subject
LAGRANGIAN MECHANICS
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A generalization of Chetaev's principle for a class of higher order nonholonomic constraints
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-12-18T13:57:47Z
dc.journal.volume
45
dc.journal.number
7
dc.journal.pagination
2785-2801
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Cendra, Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
dc.description.fil
Fil: Ibort, Alberto. Universidad Carlos III de Madrid. Instituto de Salud; España
dc.description.fil
Fil: De Leòn, Manuel. Consejo Superior de Investigaciones Científicas; España
dc.description.fil
Fil: De Diego, David Martìn. Consejo Superior de Investigaciones Científicas; España
dc.journal.title
Journal of Mathematical Physics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/10.1063/1.1763245
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1063/1.1763245
Archivos asociados