Artículo
A generalization of Chetaev's principle for a class of higher order nonholonomic constraints
Fecha de publicación:
19/07/2004
Editorial:
American Institute of Physics
Revista:
Journal of Mathematical Physics
ISSN:
0022-2488
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The constraint distribution in nonholonomic mechanics has a double role. On the one hand, it is a kinematic constraint, that is, it is a restriction on the motion itself. On the other hand, it is also a restriction on the allowed variations when using D'Alembert's principle to derive the equations of motion. We will show that many systems of physical interest where D'Alembert's principle does not apply can be conveniently modeled within the general idea of the principle of virtual work by the introduction of both kinematic constraints and variational constraints as being independent entities. This includes, for example, elastic rolling bodies and pneumatic tires. Also, D'Alembert's principle and Chetaev's principle fall into this scheme. We emphasize the geometric point of view, avoiding the use of local coordinates, which is the appropriate setting for dealing with questions of global nature, like reduction.
Palabras clave:
RIGID BODY DYNAMICS
,
LAGRANGIAN MECHANICS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INMABB)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Citación
Cendra, Hernan; Ibort, Alberto; De Leòn, Manuel; De Diego, David Martìn; A generalization of Chetaev's principle for a class of higher order nonholonomic constraints; American Institute of Physics; Journal of Mathematical Physics; 45; 7; 19-7-2004; 2785-2801
Compartir
Altmétricas