Mostrar el registro sencillo del ítem

dc.contributor.author
Perito, Ignacio  
dc.contributor.author
Roncaglia, Augusto Jose  
dc.contributor.author
Bendersky, Ariel Martin  
dc.date.available
2020-02-05T20:53:24Z  
dc.date.issued
2018-12  
dc.identifier.citation
Perito, Ignacio; Roncaglia, Augusto Jose; Bendersky, Ariel Martin; Selective and efficient quantum process tomography in arbitrary finite dimension; American Physical Society; Physical Review A; 98; 6; 12-2018; 1-8  
dc.identifier.issn
2469-9926  
dc.identifier.uri
http://hdl.handle.net/11336/96787  
dc.description.abstract
The characterization of quantum processes is a key tool in quantum information processing tasks for several reasons: on one hand, it allows one to acknowledge errors in the implementations of quantum algorithms; on the other, it allows one to characterize unknown processes occurring in nature. Bendersky, Pastawski, and Paz [A. Bendersky, F. Pastawski, and J. P. Paz, Phys. Rev. Lett. 100, 190403 (2008)PRLTAO0031-900710.1103/PhysRevLett.100.190403; Phys. Rev. A 80, 032116 (2009)PLRAAN1050-294710.1103/PhysRevA.80.032116] introduced a method to selectively and efficiently measure any given coefficient from the matrix description of a quantum channel. However, this method heavily relies on the construction of maximal sets of mutually unbiased bases (MUBs), which are known to exist only when the dimension of the Hilbert space is the power of a prime number. In this article, we lift the requirement on the dimension by presenting two variations of the method that work on arbitrary finite dimensions: one uses tensor products of maximal sets of MUBs, and the other uses a dimensional cutoff of a higher prime power dimension.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Physical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
Quantum process tomography  
dc.subject
Mutually unbiased bases  
dc.subject
Quantum information  
dc.subject.classification
Física Atómica, Molecular y Química  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Selective and efficient quantum process tomography in arbitrary finite dimension  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-10-22T17:54:31Z  
dc.identifier.eissn
2469-9934  
dc.journal.volume
98  
dc.journal.number
6  
dc.journal.pagination
1-8  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Washington DC  
dc.description.fil
Fil: Perito, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina  
dc.description.fil
Fil: Roncaglia, Augusto Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina  
dc.description.fil
Fil: Bendersky, Ariel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina  
dc.journal.title
Physical Review A  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1103/PhysRevA.98.062303  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pra/abstract/10.1103/PhysRevA.98.062303  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1808.01258