Artículo
Selective and efficient quantum process tomography in arbitrary finite dimension
Fecha de publicación:
12/2018
Editorial:
American Physical Society
Revista:
Physical Review A
ISSN:
2469-9926
e-ISSN:
2469-9934
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The characterization of quantum processes is a key tool in quantum information processing tasks for several reasons: on one hand, it allows one to acknowledge errors in the implementations of quantum algorithms; on the other, it allows one to characterize unknown processes occurring in nature. Bendersky, Pastawski, and Paz [A. Bendersky, F. Pastawski, and J. P. Paz, Phys. Rev. Lett. 100, 190403 (2008)PRLTAO0031-900710.1103/PhysRevLett.100.190403; Phys. Rev. A 80, 032116 (2009)PLRAAN1050-294710.1103/PhysRevA.80.032116] introduced a method to selectively and efficiently measure any given coefficient from the matrix description of a quantum channel. However, this method heavily relies on the construction of maximal sets of mutually unbiased bases (MUBs), which are known to exist only when the dimension of the Hilbert space is the power of a prime number. In this article, we lift the requirement on the dimension by presenting two variations of the method that work on arbitrary finite dimensions: one uses tensor products of maximal sets of MUBs, and the other uses a dimensional cutoff of a higher prime power dimension.
Palabras clave:
Quantum process tomography
,
Mutually unbiased bases
,
Quantum information
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(ICC)
Articulos de INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Articulos de INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Articulos(IFIBA)
Articulos de INST.DE FISICA DE BUENOS AIRES
Articulos de INST.DE FISICA DE BUENOS AIRES
Citación
Perito, Ignacio; Roncaglia, Augusto Jose; Bendersky, Ariel Martin; Selective and efficient quantum process tomography in arbitrary finite dimension; American Physical Society; Physical Review A; 98; 6; 12-2018; 1-8
Compartir
Altmétricas