Mostrar el registro sencillo del ítem
dc.contributor.author
Pulido, Raul
dc.contributor.author
Aguirre, Adrian Marcelo
dc.contributor.author
Ibañez Herrero, Natalia
dc.contributor.author
Ortega Mier, Miguel
dc.contributor.author
García Sanchez, Alvaro
dc.contributor.author
Mendez, Carlos Alberto
dc.date.available
2016-12-16T17:33:33Z
dc.date.issued
2014-09
dc.identifier.citation
Pulido, Raul; Aguirre, Adrian Marcelo; Ibañez Herrero, Natalia; Ortega Mier, Miguel; García Sanchez, Alvaro; et al.; Optimization methods for the operation room management under uncertainty: Stochastic programming vs. Decomposition approach; Tadbir Operational Research Group; Journal of Applied Operational Research; 6; 9-2014; 145-157
dc.identifier.issn
1735-8523
dc.identifier.uri
http://hdl.handle.net/11336/9580
dc.description.abstract
The operating theatres are the engine of the hospitals; proper management of the operating rooms and its staff represents a great challenge for managers and its results impact directly in the budget of the hospital. This work presents a MILP model for the efficient schedule of multiple surgeries in Operating Rooms (ORs) during a working day. This model considers multiple surgeons and ORs and different types of surgeries. Stochastic strategies are also implemented for taking into account the uncertain in surgery durations (pre-incision, incision, post-incision times). In addition, a heuristic-based methods and a MILP decomposition approach is proposed for solving large-scale ORs scheduling problems in computational efficient way. All these computer-aided strategies has been implemented in AIMMS, as an advanced modeling and optimization software, developing a user friendly solution tool for the operating room management under uncertainty.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Tadbir Operational Research Group
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Stochastic Optimization
dc.subject
Decomposition Approach
dc.subject
Scheduling
dc.subject.classification
Ingeniería de Procesos Químicos
dc.subject.classification
Ingeniería Química
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Optimization methods for the operation room management under uncertainty: Stochastic programming vs. Decomposition approach
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2016-12-12T13:44:03Z
dc.journal.volume
6
dc.journal.pagination
145-157
dc.journal.pais
Canadá
dc.journal.ciudad
Toronto
dc.description.fil
Fil: Pulido, Raul. Escuela Técnica Superior de Ingenieros Industriales; España
dc.description.fil
Fil: Aguirre, Adrian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina
dc.description.fil
Fil: Ibañez Herrero, Natalia. Escuela Técnica Superior de Ingenieros Industriales; España
dc.description.fil
Fil: Ortega Mier, Miguel. Escuela Técnica Superior de Ingenieros Industriales; España
dc.description.fil
Fil: García Sanchez, Alvaro. Escuela Técnica Superior de Ingenieros Industriales; España
dc.description.fil
Fil: Mendez, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina
dc.journal.title
Journal of Applied Operational Research
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://orlabanalytics.ca/jaor/archive/v6n3.htm
Archivos asociados