Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Optimization methods for the operation room management under uncertainty: Stochastic programming vs. Decomposition approach

Pulido, Raul; Aguirre, Adrian MarceloIcon ; Ibañez Herrero, Natalia; Ortega Mier, Miguel; García Sanchez, Alvaro; Mendez, Carlos AlbertoIcon
Fecha de publicación: 09/2014
Editorial: Tadbir Operational Research Group
Revista: Journal of Applied Operational Research
ISSN: 1735-8523
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería de Procesos Químicos

Resumen

The operating theatres are the engine of the hospitals; proper management of the operating rooms and its staff represents a great challenge for managers and its results impact directly in the budget of the hospital. This work presents a MILP model for the efficient schedule of multiple surgeries in Operating Rooms (ORs) during a working day. This model considers multiple surgeons and ORs and different types of surgeries. Stochastic strategies are also implemented for taking into account the uncertain in surgery durations (pre-incision, incision, post-incision times). In addition, a heuristic-based methods and a MILP decomposition approach is proposed for solving large-scale ORs scheduling problems in computational efficient way. All these computer-aided strategies has been implemented in AIMMS, as an advanced modeling and optimization software, developing a user friendly solution tool for the operating room management under uncertainty.
Palabras clave: Stochastic Optimization , Decomposition Approach , Scheduling
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.339Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/9580
URL: http://orlabanalytics.ca/jaor/archive/v6n3.htm
Colecciones
Articulos(INTEC)
Articulos de INST.DE DES.TECNOL.PARA LA IND.QUIMICA (I)
Citación
Pulido, Raul; Aguirre, Adrian Marcelo; Ibañez Herrero, Natalia; Ortega Mier, Miguel; García Sanchez, Alvaro; et al.; Optimization methods for the operation room management under uncertainty: Stochastic programming vs. Decomposition approach; Tadbir Operational Research Group; Journal of Applied Operational Research; 6; 9-2014; 145-157
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES