Artículo
QSPR Models for Predicting Log Pliver Values for Volatile Organic Compounds Combining Statistical Methods and Domain Knowledge
Palomba, Damián
; Martínez, María Jimena
; Ponzoni, Ignacio
; Diaz, Monica Fatima
; Vazquez, Gustavo Esteban
; Soto, Axel Juan
Fecha de publicación:
17/12/2012
Editorial:
Molecular Diversity Preservation International
Revista:
Molecules
ISSN:
1420-3049
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Volatile organic compounds (VOCs) are contained in a variety of chemicals that can be found in household products and may have undesirable effects on health. Thereby, it is important to model blood-to-liver partition coefficients (log Pliver) for VOCs in a fast and inexpensive way. In this paper, we present two new quantitative structure-property relationship (QSPR) models for the prediction of log Pliver, where we also propose a hybrid approach for the selection of the descriptors. This hybrid methodology combines a machine learning method with a manual selection based on expert knowledge. This allows obtaining a set of descriptors that is interpretable in physicochemical terms. Our regression models were trained using decision trees and neural networks and validated using an external test set. Results show high prediction accuracy compared to previous log Pliver models, and the descriptor selection approach provides a means to get a small set of descriptors that is in agreement with theoretical understanding of the target property.
Palabras clave:
LOG PLIVER
,
MACHINE LEARNING
,
QSPR
,
VOCS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - BAHIA BLANCA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Articulos(PLAPIQUI)
Articulos de PLANTA PILOTO DE INGENIERIA QUIMICA (I)
Articulos de PLANTA PILOTO DE INGENIERIA QUIMICA (I)
Citación
Palomba, Damián; Martínez, María Jimena; Ponzoni, Ignacio; Diaz, Monica Fatima; Vazquez, Gustavo Esteban; et al.; QSPR Models for Predicting Log Pliver Values for Volatile Organic Compounds Combining Statistical Methods and Domain Knowledge; Molecular Diversity Preservation International; Molecules; 17; 12; 17-12-2012; 14937-14953
Compartir
Altmétricas