Mostrar el registro sencillo del ítem

dc.contributor.author
Rossit, Daniel Alejandro  
dc.contributor.author
Tohmé, Fernando Abel  
dc.contributor.author
Frutos, Mariano  
dc.date.available
2020-01-14T21:22:30Z  
dc.date.issued
2019-09  
dc.identifier.citation
Rossit, Daniel Alejandro; Tohmé, Fernando Abel; Frutos, Mariano; A data-driven scheduling approach to smart manufacturing; Elsevier; Journal of Industrial Information Integration; 15; 9-2019; 69-79  
dc.identifier.issn
2452-414X  
dc.identifier.uri
http://hdl.handle.net/11336/94722  
dc.description.abstract
Traditional methods of scheduling are mostly based on the use of pieces of information directly related to the performance of schedules, as for instance processing times, delivery dates, etc., assuming that the production system is operating normally. In the case of malfunctions, the literature concentrates on the ensuing corrective operations, like scheduling with machine breakdowns or under remanufacturing considerations. These event-driven approaches are mainly used in dynamic scheduling or rescheduling systems. Unlike those, Smart Manufacturing and Industry 4.0 production environments integrate the physical and decision-making aspects of manufacturing processes in order to achieve their decentralization and autonomy. On these grounds we propose a data-driven architecture for scheduling, in which the system has real time access to data. Then, scheduling decisions can be made ahead of time, on the basis of more information. This promising approach is based on the architecture of cyber-physical systems, with a data-driven engine that uses, in particular, Big Data techniques to extract vital information for Industry 4.0 systems.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
BIG DATA  
dc.subject
CYBER-PHYSICAL SYSTEMS  
dc.subject
DATA DRIVEN  
dc.subject
DECISION-MAKING  
dc.subject
INDUSTRY 4.0  
dc.subject
SCHEDULING  
dc.subject
SMART MANUFACTURING  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
A data-driven scheduling approach to smart manufacturing  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-12-11T20:19:32Z  
dc.journal.volume
15  
dc.journal.pagination
69-79  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Rossit, Daniel Alejandro. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina  
dc.description.fil
Fil: Tohmé, Fernando Abel. Universidad Nacional del Sur. Departamento de Economía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina  
dc.description.fil
Fil: Frutos, Mariano. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina  
dc.journal.title
Journal of Industrial Information Integration  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2452414X18300475  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jii.2019.04.003