Mostrar el registro sencillo del ítem
dc.contributor.author
Rossit, Daniel Alejandro
dc.contributor.author
Tohmé, Fernando Abel
dc.contributor.author
Frutos, Mariano
dc.date.available
2020-01-14T21:22:30Z
dc.date.issued
2019-09
dc.identifier.citation
Rossit, Daniel Alejandro; Tohmé, Fernando Abel; Frutos, Mariano; A data-driven scheduling approach to smart manufacturing; Elsevier; Journal of Industrial Information Integration; 15; 9-2019; 69-79
dc.identifier.issn
2452-414X
dc.identifier.uri
http://hdl.handle.net/11336/94722
dc.description.abstract
Traditional methods of scheduling are mostly based on the use of pieces of information directly related to the performance of schedules, as for instance processing times, delivery dates, etc., assuming that the production system is operating normally. In the case of malfunctions, the literature concentrates on the ensuing corrective operations, like scheduling with machine breakdowns or under remanufacturing considerations. These event-driven approaches are mainly used in dynamic scheduling or rescheduling systems. Unlike those, Smart Manufacturing and Industry 4.0 production environments integrate the physical and decision-making aspects of manufacturing processes in order to achieve their decentralization and autonomy. On these grounds we propose a data-driven architecture for scheduling, in which the system has real time access to data. Then, scheduling decisions can be made ahead of time, on the basis of more information. This promising approach is based on the architecture of cyber-physical systems, with a data-driven engine that uses, in particular, Big Data techniques to extract vital information for Industry 4.0 systems.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
BIG DATA
dc.subject
CYBER-PHYSICAL SYSTEMS
dc.subject
DATA DRIVEN
dc.subject
DECISION-MAKING
dc.subject
INDUSTRY 4.0
dc.subject
SCHEDULING
dc.subject
SMART MANUFACTURING
dc.subject.classification
Otras Ingenierías y Tecnologías
dc.subject.classification
Otras Ingenierías y Tecnologías
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
A data-driven scheduling approach to smart manufacturing
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-12-11T20:19:32Z
dc.journal.volume
15
dc.journal.pagination
69-79
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Rossit, Daniel Alejandro. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
dc.description.fil
Fil: Tohmé, Fernando Abel. Universidad Nacional del Sur. Departamento de Economía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
dc.description.fil
Fil: Frutos, Mariano. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina
dc.journal.title
Journal of Industrial Information Integration
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2452414X18300475
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jii.2019.04.003
Archivos asociados