Artículo
A data-driven scheduling approach to smart manufacturing
Fecha de publicación:
09/2019
Editorial:
Elsevier
Revista:
Journal of Industrial Information Integration
ISSN:
2452-414X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Traditional methods of scheduling are mostly based on the use of pieces of information directly related to the performance of schedules, as for instance processing times, delivery dates, etc., assuming that the production system is operating normally. In the case of malfunctions, the literature concentrates on the ensuing corrective operations, like scheduling with machine breakdowns or under remanufacturing considerations. These event-driven approaches are mainly used in dynamic scheduling or rescheduling systems. Unlike those, Smart Manufacturing and Industry 4.0 production environments integrate the physical and decision-making aspects of manufacturing processes in order to achieve their decentralization and autonomy. On these grounds we propose a data-driven architecture for scheduling, in which the system has real time access to data. Then, scheduling decisions can be made ahead of time, on the basis of more information. This promising approach is based on the architecture of cyber-physical systems, with a data-driven engine that uses, in particular, Big Data techniques to extract vital information for Industry 4.0 systems.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IIESS)
Articulos de INST. DE INVESTIGACIONES ECONOMICAS Y SOCIALES DEL SUR
Articulos de INST. DE INVESTIGACIONES ECONOMICAS Y SOCIALES DEL SUR
Articulos(INMABB)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Citación
Rossit, Daniel Alejandro; Tohmé, Fernando Abel; Frutos, Mariano; A data-driven scheduling approach to smart manufacturing; Elsevier; Journal of Industrial Information Integration; 15; 9-2019; 69-79
Compartir
Altmétricas