Mostrar el registro sencillo del ítem
dc.contributor.author
Cardeccia, Rodrigo Alejandro
dc.contributor.author
Muro, Luis Santiago Miguel
dc.date.available
2020-01-08T15:47:00Z
dc.date.issued
2018-02
dc.identifier.citation
Cardeccia, Rodrigo Alejandro; Muro, Luis Santiago Miguel; Hypercyclic homogeneous polynomials on H(C); Academic Press Inc Elsevier Science; Journal Of Approximation Theory; 226; 2-2018; 60-72
dc.identifier.issn
0021-9045
dc.identifier.uri
http://hdl.handle.net/11336/93951
dc.description.abstract
It is known that homogeneous polynomials on Banach spaces cannot be hypercyclic, but there are examples of hypercyclic homogeneous polynomials on some non-normable Fréchet spaces. We show the existence of hypercyclic polynomials on H(C), by exhibiting a concrete polynomial which is also the first example of a frequently hypercyclic homogeneous polynomial on any F-space. We prove that the homogeneous polynomial on H(C) defined as the product of a translation operator and the evaluation at 0 is mixing, frequently hypercyclic and chaotic. We prove, in contrast, that some natural related polynomials fail to be hypercyclic.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Academic Press Inc Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
ENTIRE FUNCTIONS
dc.subject
FREQUENTLY HYPERCYCLIC OPERATORS
dc.subject
HOMOGENEOUS POLYNOMIALS
dc.subject
UNIVERSAL FUNCTIONS
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Hypercyclic homogeneous polynomials on H(C)
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-10-17T14:55:38Z
dc.journal.volume
226
dc.journal.pagination
60-72
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Cardeccia, Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; Argentina
dc.description.fil
Fil: Muro, Luis Santiago Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
dc.journal.title
Journal Of Approximation Theory
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jat.2017.09.005
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021904517301193
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1703.04773
Archivos asociados